Non-Relativistic Quantum Mechanics as a Gauge Theory

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

LA/MS Section of MAA Meeting, March 1, 2013

Outline

(1) Lifted Quantum Mechanics
(2) Toward Gauge Theory

State Functions

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$. The states ψ of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^{3}$ is given by

where $\psi^{\dagger}=\bar{\psi}^{t}$.
- While the nrobability density $|\psi|^{2}$ is an observable, the state function $\psi(t, x)$ itself is not an observable. $\psi(r, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^{n} (complex vector)-valued functions!

State Functions

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$. The states ψ of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^{3}$ is given by

$$
\langle\psi \mid \psi\rangle=\int_{V} \psi^{\dagger} \psi d^{3} x
$$

where $\psi^{\dagger}=\bar{\psi}^{t}$.

- While the probability density $|\psi|^{2}$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^{n} (complex vector)-valued functions!

State Functions

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$. The states ψ of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^{3}$ is given by

$$
\langle\psi \mid \psi\rangle=\int_{V} \psi^{\dagger} \psi d^{3} x
$$

where $\psi^{\dagger}=\bar{\psi}^{t}$.

- While the probability density $|\psi|^{2}$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^{n} (complex vector)-valued functions!

State Functions

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$. The states ψ of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^{3}$ is given by

$$
\langle\psi \mid \psi\rangle=\int_{V} \psi^{\dagger} \psi d^{3} x
$$

where $\psi^{\dagger}=\bar{\psi}^{t}$.

- While the probability density $|\psi|^{2}$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^{n} (complex vector)-valued functions!

Holomorphic Tangent Bundle $T^{+}\left(\mathbb{C}^{n}\right)$

- We regard \mathbb{C}^{n} as a Hermitian manifold of complex dimension n with the Hermitian metric

$$
g=d z^{\mu} \otimes d \bar{z}^{\mu}
$$

- The complexified tangent bundle of $\mathbb{C}^{n}, T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ is decomposed into holomorphic and anti-holomorphic tangent bundles of \mathbb{C}

$$
T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}=T^{+}\left(\mathbb{C}^{n}\right) \oplus T^{-}\left(\mathbb{C}^{n}\right)
$$

- The holomorphic tangent bundle $T^{+}\left(\mathbb{C}^{n}\right)$ is a holomorphic vector bundle.

Holomorphic Tangent Bundle $T^{+}\left(\mathbb{C}^{n}\right)$

- We regard \mathbb{C}^{n} as a Hermitian manifold of complex dimension n with the Hermitian metric

$$
g=d z^{\mu} \otimes d \bar{z}^{\mu}
$$

- The complexified tangent bundle of $\mathbb{C}^{n}, T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ is decomposed into holomorphic and anti-holomorphic tangent bundles of \mathbb{C}

$$
T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}=T^{+}\left(\mathbb{C}^{n}\right) \oplus T^{-}\left(\mathbb{C}^{n}\right)
$$

- The holomorphic tangent bundle $T^{+}\left(\mathbb{C}^{n}\right)$ is a holomorphic vector bundle.

Holomorphic Tangent Bundle $T^{+}\left(\mathbb{C}^{n}\right)$

- We regard \mathbb{C}^{n} as a Hermitian manifold of complex dimension n with the Hermitian metric

$$
g=d z^{\mu} \otimes d \bar{z}^{\mu}
$$

- The complexified tangent bundle of $\mathbb{C}^{n}, T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ is decomposed into holomorphic and anti-holomorphic tangent bundles of \mathbb{C}

$$
T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}=T^{+}\left(\mathbb{C}^{n}\right) \oplus T^{-}\left(\mathbb{C}^{n}\right)
$$

- The holomorphic tangent bundle $T^{+}\left(\mathbb{C}^{n}\right)$ is a holomorphic vector bundle.

Lift of a Map

Definition

A map $h: X \longrightarrow Z$ is called a lift of $f: X \longrightarrow Y$ if there exists a map $g: Z \longrightarrow Y$ such that $f=g \circ h$.

Lifting a State Function

- Let $\phi: \mathbb{C}^{n} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ be a vector field defined by

$$
\phi\left(z^{\mu}, \bar{z}^{\mu}\right)=z^{\mu} \frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu} \frac{\partial}{\partial \bar{z}^{\mu}}
$$

- ϕ is a section of the complexified tangent bundle $T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ since $\pi \circ \phi=l d$ where $\pi: T\left(\mathbb{C}^{n}\right)^{\mathbb{C}} \longrightarrow \mathbb{C}^{n}$ is the projection map.
- Given a state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$, define $\psi: \mathbb{R}^{3+1} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ by $\psi=\phi \circ \psi$. Then ψ is a lift of ψ since $\pi \circ \psi=\psi$. We call ψ a lifted state function.

Lifting a State Function

- Let $\phi: \mathbb{C}^{n} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ be a vector field defined by

$$
\phi\left(z^{\mu}, \bar{z}^{\mu}\right)=z^{\mu} \frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu} \frac{\partial}{\partial \bar{z}^{\mu}} .
$$

- ϕ is a section of the complexified tangent bundle $T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ since $\pi \circ \phi=I d$ where $\pi: T\left(\mathbb{C}^{n}\right)^{\mathbb{C}} \longrightarrow \mathbb{C}^{n}$ is the projection map.
- Given a state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$, define $\psi: \mathbb{R}^{3+1} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ by $\psi=\phi \circ \psi$. Then ψ is a lift of ψ since $\pi \circ \psi=\psi$. We call ψ a lifted state function.

Lifting a State Function

- Let $\phi: \mathbb{C}^{n} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ be a vector field defined by

$$
\phi\left(z^{\mu}, \bar{z}^{\mu}\right)=z^{\mu} \frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu} \frac{\partial}{\partial \bar{z}^{\mu}}
$$

- ϕ is a section of the complexified tangent bundle $T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ since $\pi \circ \phi=I d$ where $\pi: T\left(\mathbb{C}^{n}\right)^{\mathbb{C}} \longrightarrow \mathbb{C}^{n}$ is the projection map.
- Given a state function $\psi: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^{n}$, define $\psi: \mathbb{R}^{3+1} \longrightarrow T\left(\mathbb{C}^{n}\right)^{\mathbb{C}}$ by $\psi=\phi \circ \psi$. Then ψ is a lift of ψ since $\pi \circ \Psi=\psi$. We call Ψ a lifted state function.

de Broglie Wave

Example

 $\Psi(\mathbf{r}, t)=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \frac{\partial}{\partial z}+\bar{A} e^{-i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \frac{\partial}{\partial \bar{z}}$ is the lift of the de Broglie wave $\psi(\mathbf{r}, t)=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$, a plane wave that describes the motion of a free particle with momentum $\mathbf{p}=\mathbf{k} \hbar$.
The Probability of a Lifted State

- Recall that

$$
g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial z^{\mu}}\right)=g\left(\frac{\partial}{\partial \bar{z}^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=0, g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=\frac{1}{2} .
$$

- So, we obtain

$$
|\psi|^{2}=g(\Psi, \Psi)
$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ.

- Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

The Probability of a Lifted State

- Recall that

$$
g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial z^{\mu}}\right)=g\left(\frac{\partial}{\partial \bar{z}^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=0, g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=\frac{1}{2} .
$$

- So, we obtain

$$
|\psi|^{2}=g(\Psi, \Psi)
$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ.

- Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

The Probability of a Lifted State

- Recall that

$$
g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial z^{\mu}}\right)=g\left(\frac{\partial}{\partial \bar{z}^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=0, g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial \bar{z}^{\mu}}\right)=\frac{1}{2} .
$$

- So, we obtain

$$
|\psi|^{2}=g(\Psi, \Psi)
$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ.

- Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

Hermitian Structure h on the Holomorphic Tangent Bundle $T^{+}\left(\mathbb{C}^{n}\right)$

Hermitian structure always exists on the holomorphic tangent bundle $T^{+}\left(\mathbb{C}^{n}\right)$.

Theorem
For each $p \in \mathbb{C}^{n}$, define $h_{p}: T_{p}^{+}\left(\mathbb{C}^{n}\right) \times T_{p}^{+}\left(\mathbb{C}^{n}\right) \longrightarrow \mathbb{C}$ by

$$
h_{p}(u, v)=g_{p}(u, \bar{v}) \text { for } u, v \in T_{p}^{1}\left(\mathbb{C}^{n}\right)
$$

Then h is a Hermitian structure on $T^{+}\left(\mathbb{C}^{n}\right)$.

Hermitian Structure h on the Holomorphic Tangent Bundle $T^{+}\left(\mathbb{C}^{n}\right)$

Hermitian structure always exists on the holomorphic tangent bundle $T^{+}\left(\mathbb{C}^{n}\right)$.

Theorem

For each $p \in \mathbb{C}^{n}$, define $h_{p}: T_{p}^{+}\left(\mathbb{C}^{n}\right) \times T_{p}^{+}\left(\mathbb{C}^{n}\right) \longrightarrow \mathbb{C}$ by

$$
h_{p}(u, v)=g_{p}(u, \bar{v}) \text { for } u, v \in T_{p}^{+}\left(\mathbb{C}^{n}\right)
$$

Then h is a Hermitian structure on $T^{+}\left(\mathbb{C}^{n}\right)$.

$T^{+}\left(\mathbb{C}^{n}\right)$ and Lifted States

- $\langle\Psi \mid \Psi\rangle=g(\Psi, \Psi)=g\left(\Psi^{+}, \overline{\Psi^{+}}\right)=h\left(\Psi^{+}, \Psi^{+}\right)$where Ψ^{+}is the holomorphic part $\Psi^{+}=\psi^{\mu} \frac{\partial}{\partial z^{\mu}}$ of the lifted state Ψ.

- So without loss of generality, we may consider $\psi^{+}: \mathbb{R}^{3+1} \longrightarrow T^{+}\left(\mathbb{C}^{n}\right)$ as a lifted state function.

$T^{+}\left(\mathbb{C}^{n}\right)$ and Lifted States

- $\langle\Psi \mid \Psi\rangle=g(\Psi, \Psi)=g\left(\Psi^{+}, \overline{\Psi^{+}}\right)=h\left(\Psi^{+}, \Psi^{+}\right)$where Ψ^{+}is the holomorphic part $\Psi^{+}=\psi^{\mu} \frac{\partial}{\partial z^{\mu}}$ of the lifted state Ψ.
- So without loss of generality, we may consider $\Psi^{+}: \mathbb{R}^{3+1} \longrightarrow T^{+}\left(\mathbb{C}^{n}\right)$ as a lifted state function.

Connection

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

Connection

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

Connection

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

Hermitian Connection

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition
A set of sections $\left\{e_{1}, \cdots e_{n}\right\}$ is called a unitary frame if

$$
h\left(e_{\mu}, e_{\nu}\right)=\delta_{\mu \nu} .
$$

Associated with a tangent bundle $T M$ over a manifold M is a principal bundle called the frame bundle $L M=\bigcup_{p \in M} L_{p} M$, where $L_{p} M$ is the set of frames at $p \in M$. The structure group of the frame bundle $L M$ is $U(n)$ or $S U(n)$ (if it is an oriented frame bundle).

Hermitian Connection

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition

A set of sections $\left\{e_{1}, \cdots e_{n}\right\}$ is called a unitary frame if

$$
h\left(e_{\mu}, e_{v}\right)=\delta_{\mu v}
$$

Associated with a tangent bundle TM over a manifold M is a principal bundle called the frame bundle $L M=\bigcup_{p \in M} L_{p} M$, where $L_{p} M$ is the set of frames at $p \in M$. The structure group of the frame bundle $L M$ is $U(n)$ or $S U(n)$ (if it is an oriented frame bundle)

Hermitian Connection

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition

A set of sections $\left\{e_{1}, \cdots e_{n}\right\}$ is called a unitary frame if

$$
h\left(e_{\mu}, e_{v}\right)=\delta_{\mu v}
$$

Associated with a tangent bundle TM over a manifold M is a principal bundle called the frame bundle $L M=\bigcup_{p \in M} L_{p} M$, where $L_{p} M$ is the set of frames at $p \in M$. The structure group of the frame bundle $L M$ is $U(n)$ or $S U(n)$ (if it is an oriented frame bundle).

Hermitian Connection

Continued

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a unitary frame. Define a local connection one-form $\omega=\left(\omega_{\mu}^{v}\right)$ by

$$
\nabla e_{\mu}=\omega_{\mu}^{v} \otimes e_{v}
$$

Theorem

$\nabla^{2} e_{\mu}=\nabla \nabla \epsilon_{\mu}=F_{\mu}^{\gamma} e_{\nu}$
F_{μ}^{v} are the coefficients of the curvature 2-form F of the Hermitian connection ∇ or physically field strength which is defined by

Hermitian Connection

Continued

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a unitary frame. Define a local connection one-form $\omega=\left(\omega_{\mu}^{v}\right)$ by

$$
\nabla e_{\mu}=\omega_{\mu}^{v} \otimes e_{v}
$$

Theorem

$\nabla^{2} e_{\mu}=\nabla \nabla e_{\mu}=F_{\mu}^{v} e_{v}$.
F_{μ}^{V} are the coefficients of the curvature 2-form F of the Hermitian connection ∇ or physically field strength which is defined by

Hermitian Connection

Continued

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a unitary frame. Define a local connection one-form $\omega=\left(\omega_{\mu}^{v}\right)$ by

$$
\nabla e_{\mu}=\omega_{\mu}^{v} \otimes e_{v}
$$

Theorem

$$
\nabla^{2} e_{\mu}=\nabla \nabla e_{\mu}=F_{\mu}^{v} e_{v}
$$

F_{μ}^{v} are the coefficients of the curvature 2-form F of the Hermitian connection ∇ or physically field strength which is defined by

$$
F=d \omega+\frac{1}{2} \omega \wedge \omega
$$

Hermitian Connection

Continued

Let us differentiate ϕ^{+}with the Hermitian connection ∇.

This allows us to define a covariant derivative ∇^{+}for lifted state functions Ψ^{+}

Definition

$\nabla^{+} \psi^{+}=d \psi^{\mu}$

Hermitian Connection

Continued

Let us differentiate ϕ^{+}with the Hermitian connection ∇.

$$
\begin{aligned}
\nabla \phi^{+} & =\nabla\left(z^{\mu} \frac{\partial}{\partial z^{\mu}}\right) \\
& =d z^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}+z^{\mu} \nabla\left(\frac{\partial}{\partial z^{\mu}}\right) \\
& =d z^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}+z^{\mu} \omega_{\mu}^{v} \otimes \frac{\partial}{\partial z^{v}}
\end{aligned}
$$

This allows us to define a covariant derivative ∇^{+}for lifted state functions ψ^{+}

Definition

Hermitian Connection

Continued

Let us differentiate ϕ^{+}with the Hermitian connection ∇.

$$
\begin{aligned}
\nabla \phi^{+} & =\nabla\left(z^{\mu} \frac{\partial}{\partial z^{\mu}}\right) \\
& =d z^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}+z^{\mu} \nabla\left(\frac{\partial}{\partial z^{\mu}}\right) \\
& =d z^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}+z^{\mu} \omega_{\mu}^{v} \otimes \frac{\partial}{\partial z^{v}}
\end{aligned}
$$

This allows us to define a covariant derivative ∇^{+}for lifted state functions Ψ^{+}.

Definition

$\nabla^{+} \psi^{+}=d \psi^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}+\psi^{\mu} \omega_{\mu}^{v} \otimes \frac{\partial}{\partial z^{v}}$.

Quantum Mechanics of a Charged Particle in an Electromagnetic Field

- Assume that $\omega \in \mathfrak{u}(1)=\mathfrak{s o}(2)$. Then in terms of space-time coordinates $\left(t, x^{1}, x^{2}, x^{3}\right), \omega$ can be written as

$$
\omega=-\frac{i e}{\hbar} \rho d t-\frac{i e}{\hbar} A_{\alpha} d x^{\alpha}, \alpha=1,2,3
$$

- The covariant derivative $\nabla^{+} \psi^{+}$of the lifted state function $\Psi^{+}: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}$ is then

Quantum Mechanics of a Charged Particle in an

 Electromagnetic Field- Assume that $\omega \in \mathfrak{u}(1)=\mathfrak{s o}(2)$. Then in terms of space-time coordinates $\left(t, x^{1}, x^{2}, x^{3}\right), \omega$ can be written as

$$
\omega=-\frac{i e}{\hbar} \rho d t-\frac{i e}{\hbar} A_{\alpha} d x^{\alpha}, \alpha=1,2,3
$$

- The covariant derivative $\nabla^{+} \psi^{+}$of the lifted state function $\Psi^{+}: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}$ is then

$$
\begin{aligned}
\nabla^{+} \Psi^{+} & =d \psi \otimes \frac{\partial}{\partial z}+\omega \psi \otimes \frac{\partial}{\partial z} \\
& =\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho\right) \psi \frac{\partial}{\partial z} \otimes d t+\left(\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}\right) \psi \frac{\partial}{\partial z} \otimes d x^{\alpha}
\end{aligned}
$$

Quantum Mechanics of a Charged Particle in an

 Electromagnetic Field
Continued

- $-i \hbar \nabla^{+} \Psi^{+}=$
$-i \hbar\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho\right) \psi \frac{\partial}{\partial z} \otimes d t-i \hbar\left(\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}\right) \psi \frac{\partial}{\partial z} \otimes d x^{\alpha}$ may be regarded as the four-momentum operator for lifted state functions $\Psi^{+}: \mathbb{R}^{3+1} \longrightarrow T^{+}(\mathbb{C})$.
Let $\nabla_{0}=\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho\right) \frac{\partial}{\partial z}, \nabla_{\alpha}=\left(\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}\right) \frac{\partial}{\partial z}, \alpha=1,2,3$. Then the Schrödinger equation for a charge particle in an electromagnetic field is given by

where
$D_{0}=\pi \circ \nabla_{0}=$

Quantum Mechanics of a Charged Particle in an

Electromagnetic Field

Continued

- $-i \hbar \nabla^{+} \Psi^{+}=$
$-i \hbar\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho\right) \psi \frac{\partial}{\partial z} \otimes d t-i \hbar\left(\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}\right) \psi \frac{\partial}{\partial z} \otimes d x^{\alpha}$ may
be regarded as the four-momentum operator for lifted state functions $\Psi^{+}: \mathbb{R}^{3+1} \longrightarrow T^{+}(\mathbb{C})$.
- Let $\nabla_{0}=\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho\right) \frac{\partial}{\partial z}, \nabla_{\alpha}=\left(\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}\right) \frac{\partial}{\partial z}, \alpha=1,2,3$.

Then the Schrödinger equation for a charge particle in an electromagnetic field is given by

$$
i \hbar D_{0} \psi=-\frac{\hbar^{2}}{2 m} D_{\alpha}^{2} \psi+V \psi
$$

where

$$
D_{0}=\pi \circ \nabla_{0}=\frac{\partial}{\partial t}-\frac{i e}{\hbar} \rho, D_{\alpha}=\pi \circ \nabla_{\alpha}=\frac{\partial}{\partial x^{\alpha}}-\frac{i e}{\hbar} A_{\alpha}, \alpha=1,2,3 .
$$

Further Research

- Non-relativistic equations for particles with higher spin? In particular, non-relativistic equation for spin-3/2 particle.
- Generalization to relativistic case?

Further Research

- Non-relativistic equations for particles with higher spin? In particular, non-relativistic equation for spin-3/2 particle.
- Generalization to relativistic case?

Questions?

Thank you.

