Non-Relativistic Quantum Mechanics as a Gauge Theory

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

LA/MS Section of MAA Meeting, March 1, 2013

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

2 Toward Gauge Theory

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function *ψ* : ℝ³⁺¹ → ℂⁿ. The states *ψ* of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V\subset \mathbb{R}^3$ is given by

$$\langle \psi | \psi \rangle = \int_V \psi^{\dagger} \psi d^3 x$$

where $\psi^{\dagger} = ar{\psi}^t$.

- While the probability density $|\psi|^2$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^n (complex vector)-valued functions!

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function *ψ* : ℝ³⁺¹ → ℂⁿ. The states *ψ* of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^3$ is given by

$$\langle \psi | \psi \rangle = \int_V \psi^{\dagger} \psi d^3 x$$

where $\psi^\dagger = ar{\psi}^t$.

- While the probability density $|\psi|^2$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^n (complex vector)-valued functions!

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function *ψ* : ℝ³⁺¹ → ℂⁿ. The states *ψ* of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^3$ is given by

$$\langle \psi | \psi \rangle = \int_V \psi^{\dagger} \psi d^3 x$$

where $\psi^\dagger = ar{\psi}^t$.

- While the probability density $|\psi|^2$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be Cⁿ (complex vector)-valued functions!

- In quantum mechanics, a particle is described by a complex-valued wave function, called state function *ψ* : ℝ³⁺¹ → ℂⁿ. The states *ψ* of a quantum mechanical system forms an infinite dimensional Hilbert space.
- The probability that a particle in a state ψ to be found inside the volume $V \subset \mathbb{R}^3$ is given by

$$\langle \psi | \psi \rangle = \int_V \psi^{\dagger} \psi d^3 x$$

where $\psi^\dagger = ar{\psi}^t$.

- While the probability density $|\psi|^2$ is an observable, the state function $\psi(t, \mathbf{x})$ itself is not an observable. $\psi(\mathbf{r}, t)$ is a manifestation of a particle in a state.
- So, there is no physical reason why wave functions have to be \mathbb{C}^n (complex vector)-valued functions!

Holomorphic Tangent Bundle $T^+(\mathbb{C}^n)$

• We regard \mathbb{C}^n as a Hermitian manifold of complex dimension n with the Hermitian metric

$$g=dz^{\mu}\otimes d\,\bar{z}^{\mu}.$$

 The complexified tangent bundle of Cⁿ, T(Cⁿ)^C is decomposed into holomorphic and anti-holomorphic tangent bundles of C

$$T(\mathbb{C}^n)^{\mathbb{C}} = T^+(\mathbb{C}^n) \oplus T^-(\mathbb{C}^n).$$

The holomorphic tangent bundle T⁺(ℂⁿ) is a holomorphic vector bundle.

Holomorphic Tangent Bundle $T^+(\mathbb{C}^n)$

 We regard Cⁿ as a Hermitian manifold of complex dimension n with the Hermitian metric

$$g=dz^{\mu}\otimes d\,\bar{z}^{\mu}.$$

 The complexified tangent bundle of Cⁿ, T(Cⁿ)^C is decomposed into holomorphic and anti-holomorphic tangent bundles of C

$$T(\mathbb{C}^n)^{\mathbb{C}} = T^+(\mathbb{C}^n) \oplus T^-(\mathbb{C}^n).$$

The holomorphic tangent bundle T⁺(ℂⁿ) is a holomorphic vector bundle.

Holomorphic Tangent Bundle $T^+(\mathbb{C}^n)$

• We regard \mathbb{C}^n as a Hermitian manifold of complex dimension n with the Hermitian metric

$$g=dz^{\mu}\otimes d\,ar{z}^{\mu}.$$

 The complexified tangent bundle of Cⁿ, T(Cⁿ)^C is decomposed into holomorphic and anti-holomorphic tangent bundles of C

$$T(\mathbb{C}^n)^{\mathbb{C}} = T^+(\mathbb{C}^n) \oplus T^-(\mathbb{C}^n).$$

• The holomorphic tangent bundle $T^+(\mathbb{C}^n)$ is a holomorphic vector bundle.

Lift of a Map

Definition

A map $h: X \longrightarrow Z$ is called a lift of $f: X \longrightarrow Y$ if there exists a map $g: Z \longrightarrow Y$ such that $f = g \circ h$.

X

$$\begin{array}{ccc} & Z \\ & \nearrow & \downarrow \\ & \longrightarrow & Y \end{array}$$

Lifting a State Function

• Let $\phi : \mathbb{C}^n \longrightarrow T(\mathbb{C}^n)^{\mathbb{C}}$ be a vector field defined by

$$\phi(z^{\mu},\bar{z}^{\mu})=z^{\mu}\frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu}\frac{\partial}{\partial \bar{z}^{\mu}}$$

- ϕ is a section of the complexified tangent bundle $T(\mathbb{C}^n)^{\mathbb{C}}$ since $\pi \circ \phi = Id$ where $\pi : T(\mathbb{C}^n)^{\mathbb{C}} \longrightarrow \mathbb{C}^n$ is the projection map.
- Given a state function $\psi : \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^n$, define $\Psi : \mathbb{R}^{3+1} \longrightarrow T(\mathbb{C}^n)^{\mathbb{C}}$ by $\Psi = \phi \circ \psi$. Then Ψ is a lift of ψ since $\pi \circ \Psi = \psi$. We call Ψ a *lifted state function*.

Lifting a State Function

• Let $\phi: \mathbb{C}^n \longrightarrow \mathcal{T}(\mathbb{C}^n)^{\mathbb{C}}$ be a vector field defined by

$$\phi(z^{\mu},\bar{z}^{\mu})=z^{\mu}\frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu}\frac{\partial}{\partial \bar{z}^{\mu}}$$

- ϕ is a section of the complexified tangent bundle $T(\mathbb{C}^n)^{\mathbb{C}}$ since $\pi \circ \phi = Id$ where $\pi : T(\mathbb{C}^n)^{\mathbb{C}} \longrightarrow \mathbb{C}^n$ is the projection map.
- Given a state function $\psi : \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^n$, define $\Psi : \mathbb{R}^{3+1} \longrightarrow T(\mathbb{C}^n)^{\mathbb{C}}$ by $\Psi = \phi \circ \psi$. Then Ψ is a lift of ψ since $\pi \circ \Psi = \psi$. We call Ψ a *lifted state function*.

Lifting a State Function

• Let $\phi: \mathbb{C}^n \longrightarrow \mathcal{T}(\mathbb{C}^n)^{\mathbb{C}}$ be a vector field defined by

$$\phi(z^{\mu},\bar{z}^{\mu})=z^{\mu}\frac{\partial}{\partial z^{\mu}}+\bar{z}^{\mu}\frac{\partial}{\partial \bar{z}^{\mu}}$$

- ϕ is a section of the complexified tangent bundle $T(\mathbb{C}^n)^{\mathbb{C}}$ since $\pi \circ \phi = Id$ where $\pi : T(\mathbb{C}^n)^{\mathbb{C}} \longrightarrow \mathbb{C}^n$ is the projection map.
- Given a state function $\psi : \mathbb{R}^{3+1} \longrightarrow \mathbb{C}^n$, define $\Psi : \mathbb{R}^{3+1} \longrightarrow \mathcal{T}(\mathbb{C}^n)^{\mathbb{C}}$ by $\Psi = \phi \circ \psi$. Then Ψ is a lift of ψ since $\pi \circ \Psi = \psi$. We call Ψ a *lifted state function*.

de Broglie Wave

Example

$$\begin{split} \Psi(\mathbf{r},t) &= A e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \frac{\partial}{\partial z} + \bar{A} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \frac{\partial}{\partial \bar{z}} \text{ is the lift of the de Broglie} \\ \text{wave } \Psi(\mathbf{r},t) &= A e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}, \text{ a plane wave that describes the motion} \\ \text{of a free particle with momentum } \mathbf{p} &= \mathbf{k}\hbar. \end{split}$$

The Probability of a Lifted State

Recall that

$$g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial z^{\mu}}\right) = g\left(\frac{\partial}{\partial \bar{z}^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = 0, \ g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = \frac{1}{2}.$$

• So, we obtain

$$|\psi|^2 = g(\Psi, \Psi).$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ .

• Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

The Probability of a Lifted State

Recall that

$$g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial z^{\mu}}\right) = g\left(\frac{\partial}{\partial \bar{z}^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = 0, \ g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = \frac{1}{2}.$$

So, we obtain

$$|\psi|^2 = g(\Psi, \Psi).$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ .

 Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

The Probability of a Lifted State

Recall that

$$g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial z^{\mu}}\right) = g\left(\frac{\partial}{\partial \bar{z}^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = 0, \ g\left(\frac{\partial}{\partial z^{\mu}},\frac{\partial}{\partial \bar{z}^{\mu}}\right) = \frac{1}{2}.$$

So, we obtain

$$|\psi|^2 = g(\Psi, \Psi).$$

We define $g(\Psi, \Psi)$ to be the probability density of the lifeted state function Ψ .

• Since a state function and its lift have the same probability, we may study quantum mechanics with lifted state functions.

Hermitian Structure h on the Holomorphic Tangent Bundle $T^+(\mathbb{C}^n)$

Hermitian structure always exists on the holomorphic tangent bundle $T^+(\mathbb{C}^n)$.

Theorem

For each
$$p \in \mathbb{C}^n$$
, define $h_p : T_p^+(\mathbb{C}^n) \times T_p^+(\mathbb{C}^n) \longrightarrow \mathbb{C}$ by

$$h_p(u,v) = g_p(u,v)$$
 for $u,v \in T_p^+(\mathbb{C}^n)$.

Then h is a Hermitian structure on $T^+(\mathbb{C}^n)$.

Hermitian Structure h on the Holomorphic Tangent Bundle $T^+(\mathbb{C}^n)$

Hermitian structure always exists on the holomorphic tangent bundle $T^+(\mathbb{C}^n)$.

Theorem

For each
$$p \in \mathbb{C}^n$$
, define $h_p : T_p^+(\mathbb{C}^n) \times T_p^+(\mathbb{C}^n) \longrightarrow \mathbb{C}$ by

$$h_p(u,v) = g_p(u,v)$$
 for $u, v \in T_p^+(\mathbb{C}^n)$.

Then h is a Hermitian structure on $T^+(\mathbb{C}^n)$.

$T^+(\mathbb{C}^n)$ and Lifted States

• $\langle \Psi | \Psi \rangle = g(\Psi, \Psi) = g(\Psi^+, \overline{\Psi^+}) = h(\Psi^+, \Psi^+)$ where Ψ^+ is the holomorphic part $\Psi^+ = \psi^{\mu} \frac{\partial}{\partial z^{\mu}}$ of the lifted state Ψ .

・ 同 ト ・ ヨ ト ・ ヨ ト

• So without loss of generality, we may consider $\Psi^+ : \mathbb{R}^{3+1} \longrightarrow T^+(\mathbb{C}^n)$ as a lifted state function.

$T^+(\mathbb{C}^n)$ and Lifted States

- $\langle \Psi | \Psi \rangle = g(\Psi, \Psi) = g(\Psi^+, \overline{\Psi^+}) = h(\Psi^+, \Psi^+)$ where Ψ^+ is the holomorphic part $\Psi^+ = \psi^{\mu} \frac{\partial}{\partial z^{\mu}}$ of the lifted state Ψ .
- So without loss of generality, we may consider $\Psi^+ : \mathbb{R}^{3+1} \longrightarrow T^+(\mathbb{C}^n)$ as a lifted state function.

Connection

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

Connection

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

- For an obvious reason, we would like to differentiate sections (fields). If we cannot differentiate them, we cannot do physics.
- Differentiating sections of a bundle can be done by introducing a connection ∇.
- In general, connection is not unique i.e. there is no unique way to differentiate sections and one needs to make a choice of connection.

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition

A set of sections $\{e_1, \dots e_n\}$ is called a unitary frame if

$$h(e_{\mu}, e_{\nu}) = \delta_{\mu\nu}.$$

Associated with a tangent bundle *TM* over a manifold *M* is a principal bundle called the frame bundle $LM = \bigcup_{p \in M} L_p M$, where $L_p M$ is the set of frames at $p \in M$. The structure group of the frame bundle *LM* is U(n) or SU(n) (if it is an oriented frame bundle).

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition

A set of sections $\{e_1, \cdots e_n\}$ is called a unitary frame if

$$h(e_{\mu},e_{\nu})=\delta_{\mu\nu}.$$

Associated with a tangent bundle *TM* over a manifold *M* is a principal bundle called the frame bundle $LM = \bigcup_{p \in M} L_p M$, where $L_p M$ is the set of frames at $p \in M$. The structure group of the frame bundle *LM* is U(n) or SU(n) (if it is an oriented frame bundle).

Theorem

Let M be a Hermitian manifold. Given a holomorphic vector bundle $\pi: E \longrightarrow M$ and a Hermitian structure h, there exists a unique Hermitian connection.

Definition

A set of sections $\{e_1, \cdots e_n\}$ is called a unitary frame if

$$h(e_{\mu},e_{\nu})=\delta_{\mu\nu}.$$

Associated with a tangent bundle TM over a manifold M is a principal bundle called the frame bundle $LM = \bigcup_{p \in M} L_p M$, where $L_p M$ is the set of frames at $p \in M$. The structure group of the frame bundle LM is U(n) or SU(n) (if it is an oriented frame bundle).

Let $\{e_1,\cdots,e_n\}$ be a unitary frame. Define a local connection one-form $\omega=(\omega_\mu^
u)$ by

$$abla e_{\mu} = \omega_{\mu}^{
u} \otimes e_{
u}.$$

Theorem

$$\nabla^2 e_{\mu} = \nabla \nabla e_{\mu} = F^{\nu}_{\mu} e_{\nu}.$$

 F^{ν}_{μ} are the coefficients of the *curvature 2-form* F of the Hermitian connection ∇ or physically field strength which is defined by

$$F=d\omega+\frac{1}{2}\omega\wedge\omega.$$

◆ロ → ▲母 → ▲母 → ▲母 → ▲日 →

Let $\{e_1,\cdots,e_n\}$ be a unitary frame. Define a local connection one-form $\omega=(\omega_\mu^
u)$ by

$$abla e_{\mu} = \omega_{\mu}^{
u} \otimes e_{
u}.$$

Theorem

$$\nabla^2 e_{\mu} = \nabla \nabla e_{\mu} = F_{\mu}^{\nu} e_{\nu}.$$

 F^{ν}_{μ} are the coefficients of the *curvature 2-form* F of the Hermitian connection ∇ or physically field strength which is defined by

$$F=d\omega+\frac{1}{2}\omega\wedge\omega.$$

Let $\{e_1,\cdots,e_n\}$ be a unitary frame. Define a local connection one-form $\omega=(\omega_\mu^
u)$ by

$$abla e_{\mu} = \omega_{\mu}^{
u} \otimes e_{
u}.$$

Theorem

$$\nabla^2 e_{\mu} = \nabla \nabla e_{\mu} = F^{\nu}_{\mu} e_{\nu}.$$

 F^{ν}_{μ} are the coefficients of the *curvature 2-form* F of the Hermitian connection ∇ or physically field strength which is defined by

$$F=d\omega+\frac{1}{2}\omega\wedge\omega.$$

Let us differentiate ϕ^+ with the Hermitian connection abla.

$$\nabla \phi^{+} = \nabla \left(z^{\mu} \frac{\partial}{\partial z^{\mu}} \right)$$
$$= dz^{\mu} \otimes \frac{\partial}{\partial z^{\mu}} + z^{\mu} \nabla \left(\frac{\partial}{\partial z^{\mu}} \right)$$
$$= dz^{\mu} \otimes \frac{\partial}{\partial z^{\mu}} + z^{\mu} \omega_{\mu}^{\nu} \otimes \frac{\partial}{\partial z^{\nu}}.$$

This allows us to define a covariant derivative $abla^+$ for lifted state functions Ψ^+ .

Definition

$$abla^+ \Psi^+ = d \, \psi^\mu \otimes rac{\partial}{\partial z^\mu} + \psi^\mu \omega^
u_\mu \otimes rac{\partial}{\partial z^
u}$$

Let us differentiate ϕ^+ with the Hermitian connection abla.

$$egin{aligned}
abla \phi^+ &=
abla \left(z^\mu rac{\partial}{\partial z^\mu}
ight) \ &= dz^\mu \otimes rac{\partial}{\partial z^\mu} + z^\mu
abla \left(rac{\partial}{\partial z^\mu}
ight) \ &= dz^\mu \otimes rac{\partial}{\partial z^\mu} + z^\mu \omega^v_\mu \otimes rac{\partial}{\partial z^v}. \end{aligned}$$

This allows us to define a covariant derivative $abla^+$ for lifted state functions Ψ^+ .

Definition

$$abla^+ \Psi^+ = d \, \psi^\mu \otimes rac{\partial}{\partial z^\mu} + \psi^\mu \omega^
u_\mu \otimes rac{\partial}{\partial z^
u}$$

Let us differentiate ϕ^+ with the Hermitian connection abla.

$$egin{aligned}
abla \phi^+ &=
abla \left(z^\mu rac{\partial}{\partial z^\mu}
ight) \ &= dz^\mu \otimes rac{\partial}{\partial z^\mu} + z^\mu
abla \left(rac{\partial}{\partial z^\mu}
ight) \ &= dz^\mu \otimes rac{\partial}{\partial z^\mu} + z^\mu \omega^v_\mu \otimes rac{\partial}{\partial z^v}. \end{aligned}$$

This allows us to define a covariant derivative ∇^+ for lifted state functions $\Psi^+.$

Definition

$$abla^+ \Psi^+ = d \, \psi^\mu \otimes rac{\partial}{\partial z^\mu} + \psi^\mu \omega^
u_\mu \otimes rac{\partial}{\partial z^
u}$$

Quantum Mechanics of a Charged Particle in an Electromagnetic Field

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates (t,x¹,x²,x³), ω can be written as

$$\omega = -rac{ie}{\hbar}
ho dt - rac{ie}{\hbar}A_{lpha}dx^{lpha}, \; lpha = 1, 2, 3.$$

• The covariant derivative $\nabla^+ \psi^+$ of the lifted state function $\Psi^+: \mathbb{R}^{3+1} \longrightarrow \mathbb{C}$ is then

$$\nabla^{+}\Psi^{+} = d\psi \otimes \frac{\partial}{\partial z} + \omega \psi \otimes \frac{\partial}{\partial z}$$
$$= \left(\frac{\partial}{\partial t} - \frac{ie}{\hbar}\rho\right)\psi\frac{\partial}{\partial z} \otimes dt + \left(\frac{\partial}{\partial x^{\alpha}} - \frac{ie}{\hbar}A_{\alpha}\right)\psi\frac{\partial}{\partial z} \otimes dx^{\alpha}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Quantum Mechanics of a Charged Particle in an Electromagnetic Field

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates (t,x¹,x²,x³), ω can be written as

$$\omega = -rac{ie}{\hbar}
ho dt - rac{ie}{\hbar}A_lpha dx^lpha, \ lpha = 1,2,3.$$

• The covariant derivative $\nabla^+ \psi^+$ of the lifted state function $\Psi^+ : \mathbb{R}^{3+1} \longrightarrow \mathbb{C}$ is then

$$\nabla^{+}\Psi^{+} = d\psi \otimes \frac{\partial}{\partial z} + \omega \psi \otimes \frac{\partial}{\partial z}$$
$$= \left(\frac{\partial}{\partial t} - \frac{ie}{\hbar}\rho\right)\psi\frac{\partial}{\partial z} \otimes dt + \left(\frac{\partial}{\partial x^{\alpha}} - \frac{ie}{\hbar}A_{\alpha}\right)\psi\frac{\partial}{\partial z} \otimes dx^{\alpha}.$$

Quantum Mechanics of a Charged Particle in an Electromagnetic Field

- $-i\hbar\nabla^+\Psi^+ = -i\hbar\left(\frac{\partial}{\partial t} \frac{ie}{\hbar}\rho\right)\psi\frac{\partial}{\partial z}\otimes dt i\hbar\left(\frac{\partial}{\partial x^{\alpha}} \frac{ie}{\hbar}A_{\alpha}\right)\psi\frac{\partial}{\partial z}\otimes dx^{\alpha}$ may be regarded as the four-momentum operator for lifted state functions $\Psi^+: \mathbb{R}^{3+1} \longrightarrow T^+(\mathbb{C})$.
- Let $\nabla_0 = \left(\frac{\partial}{\partial t} \frac{ie}{\hbar}\rho\right)\frac{\partial}{\partial z}$, $\nabla_\alpha = \left(\frac{\partial}{\partial x^\alpha} \frac{ie}{\hbar}A_\alpha\right)\frac{\partial}{\partial z}$, $\alpha = 1, 2, 3$. Then the Schrödinger equation for a charge particle in an electromagnetic field is given by

$$i\hbar D_0 \psi = -\frac{\hbar^2}{2m}D_\alpha^2 \psi + V\psi,$$

where

$$D_0 = \pi \circ \nabla_0 = \frac{\partial}{\partial t} - \frac{ie}{\hbar} \rho, \ D_\alpha = \pi \circ \nabla_\alpha = \frac{\partial}{\partial x^\alpha} - \frac{ie}{\hbar} A_\alpha, \ \alpha = 1, 2, 3.$$

Quantum Mechanics of a Charged Particle in an Electromagnetic Field

- $-i\hbar\nabla^+\Psi^+ = -i\hbar\left(\frac{\partial}{\partial t} \frac{ie}{\hbar}\rho\right)\psi\frac{\partial}{\partial z}\otimes dt i\hbar\left(\frac{\partial}{\partial x^{\alpha}} \frac{ie}{\hbar}A_{\alpha}\right)\psi\frac{\partial}{\partial z}\otimes dx^{\alpha}$ may be regarded as the four-momentum operator for lifted state functions $\Psi^+: \mathbb{R}^{3+1} \longrightarrow T^+(\mathbb{C})$.
- Let $\nabla_0 = \left(\frac{\partial}{\partial t} \frac{ie}{\hbar}\rho\right)\frac{\partial}{\partial z}$, $\nabla_\alpha = \left(\frac{\partial}{\partial x^\alpha} \frac{ie}{\hbar}A_\alpha\right)\frac{\partial}{\partial z}$, $\alpha = 1, 2, 3$. Then the Schrödinger equation for a charge particle in an electromagnetic field is given by

$$i\hbar D_0\psi = -rac{\hbar^2}{2m}D_{lpha}^2\psi + V\psi,$$

where

$$D_{0} = \pi \circ \nabla_{0} = \frac{\partial}{\partial t} - \frac{ie}{\hbar} \rho, \ D_{\alpha} = \pi \circ \nabla_{\alpha} = \frac{\partial}{\partial x^{\alpha}} - \frac{ie}{\hbar} A_{\alpha}, \ \alpha = 1, 2, 3.$$

Further Research

- Non-relativistic equations for particles with higher spin? In particular, non-relativistic equation for spin-3/2 particle.
- Generalization to relativistic case?

Further Research

- Non-relativistic equations for particles with higher spin? In particular, non-relativistic equation for spin-3/2 particle.
- Generalization to relativistic case?

Questions?

Thank you.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ()