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Abstract
In this article, we construct surfaces of revolution
with constant mean curvature H = c in hyperbolic 3-
space H3(−c2) of constant curvature −c2. It is shown
that the limit of the surfaces of revolution with H = c
in H3(−c2) is catenoid, the minimal surface of revo-
lution in Euclidean 3-space as c approaches 0.

Introduction
Let R3 be equipped with the metric

ds2 = (dt)2 + e−2ct{(dx)2 + (dy)2}. (1)

The space (R3, gc) has constant curvature −c2. It is
denoted by H3(−c2) and is called the pseudospherical
model of hyperbolic 3-space. From the metric (1),
one can easily see that H3(−c2) flattens out to E3,
Euclidean 3-space as c→ 0.

In H3(−c2), surfaces of constant mean curvature
H = c are particularly interesting, because they
exhibit many geometric properties in common with
minimal surfaces in E3. This is not a coincidence.
There is a one-to-one correspondence, so-called Law-
son correspondence, between surfaces of constant
mean curvature Hh in H3(−c2) and surfaces of con-
stant mean curvature He =

√
H2

h − c2 [Lawson].
Those corresponding constant mean curvature sur-
faces satisfy the same Gauss-Codazzi equations, so
they share many geometric properties in common,
even though they live in different spaces. In this
article, we are particularly interested in construct-
ing surfaces of revolution with H = c in H3(−c2).
Hyperbolic 3-space does not have rotational symme-
try as much as Euclidean 3-space does. From the
metric (1), we see that rotations on the xy-plane

i.e. rotations about the t-axis may be considered in
H3(−c2). Surfaces of constant mean curvature H = c
in H3(−c2) can be in general constructed by Bryant’s
representation formula which is an analogue of Weier-
strass representation formula for minimal surfaces in
E3[Bryant]. But it is not suitable to use to con-
struct surfaces of revolution with H = c. We cal-
culate directly the mean curvature H of the surface
obtained by rotating an unknown profile curve about
the t − axis. This results a second order non-linear
differential equation of the profile curve. We unfor-
tunately cannot solve the differential equation ana-
lytically but are able to solve it numerically with the
aid of MAPLE software. Once we obtain the profile
curve, we then construct surface of revolution with
H = c simply by rotating the profile curve about
the t-axis. From the differential equation of profile
curves, it can be seen that the limit of the surfaces of
revolution with H = c in H3(−c2) is a catenoid, the
minimal surface of revolution in Euclidean 3-space as
c approaches 0. This limiting behavior of the surfaces
of revolution withH = c in H3(−c2) is also illustrated
with graphics.

The author is a junior mathematics and physics
major of the University of Southern Mississippi. This
research has been conducted under the direction of
Dr. Sungwook Lee in the Department of Mathemat-
ics at the University of Southern Mississippi.

1 Parametric Surfaces in
H3(−c2)

LetM be a domain and ϕ : M → H3(−c2) a paramet-
ric surface. The metric (1) induces an inner product
on each tangent space TpH3(−c2). This inner product
can be used to define conformal surfaces in H3(−c2).

Definition 1. ϕ : M −→ H3(−c2) is said to be con-
formal if

〈ϕu, ϕv〉 = 0, |ϕu| = |ϕv| = eω/2, (2)

where (u, v) is a local coordinate system inM and ω :
M → R is a real-valued function in M. The induced
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metric on the conformal parametric surface is given
by

ds2ϕ = eω{(du)2 + (dv)2}. (3)

In order to calculate the mean curvature of ϕ, we
need to find a unit normal vector field N of ϕ. For
that, we need something like cross product. H3(−c2)
is not a vector space but we can define an ana-
logue1 of cross product locally on each tangent space
TpH3(−c2). Let v = v1

(
∂
∂t

)
p

+ v2
(

∂
∂x

)
p

+ v3

(
∂
∂y

)
p
,

w = w1

(
∂
∂t

)
p

+ w2

(
∂
∂x

)
p

+ w3

(
∂
∂y

)
p
∈ TpH3(−c2),

where
{(

∂
∂t

)
p
,
(

∂
∂x

)
p,

(
∂
∂y

)
p

}
denote the canonical

basis for TpH3(−c2). The cross product v × w is
then defined to be

v ×w = (v2w3 − v3w2)

(
∂

∂t

)
p

+ e2ct(v3w1 − v1w3)

(
∂

∂x

)
p

+ e2ct(v1w2 − v2w1)

(
∂

∂y

)
p

(4)

where p = (t, x, y) ∈ H3(−c2).
Let

E := 〈ϕu, ϕu〉, F := 〈ϕu, ϕv〉, G := 〈ϕv, ϕv〉.

Then by a direct calculation we obatin

Proposition 2. Let ϕ : M → H3(−c2) be a paramet-
ric surface. Then on each tangent plane Tpϕ(M), we
have

||ϕu × ϕv||2 = e4ct(u,v)(EG− F 2) (5)

where p = (t(u, v), x(u, v), y(u, v)) ∈ H3(−c2) .

Remark 3. If c→ 0, (5) becomes the familiar formula

||ϕu × ϕv||2 = EG− F 2

from the Euclidean case.

2 The Mean curvature of a
Parametric Surface in H3(−c2)

In the Euclidean case, the mean curvature of a para-
metric surface ϕ(u, v) may be calculated by Gauss’
formula

H =
G`+ En− 2Fm

2(EG− F 2)
(6)

1We will simply call it cross prodcut.

where

` = 〈ϕuu, N〉,m = 〈ϕuv, N〉, n = 〈ϕvv, N〉

and N is a unit normal vector field of ϕ. It is not
certain, but (6) does not appear to be valid for para-
metric surfaces in H3(−c2) in general. The derivation
of (6) requires the use of Lagrange’s identity, but it
is no longer valid in the tangent spaces of H3(−c2).
However, (6) is still valid for conformal surfaces in
H3(−c2). It is well-known that:

Proposition 4. Let ϕ : M → H3(−c2)be a conformal
surface satisfying (2). The mean curvature H of ϕ is
then computed to be

H =
1

2
e−ω〈∆ϕ,N〉. (7)

One can then easily see that the the formulas (6) and
(7) coincide for conformal surfaces.

3 Surfaces of Revolution with
Constant Mean Curvature
H = c in H3(−c2)

In this section, we construct a surface of revolution
with constant mean curvature H = c in H3(−c2). As
mentioned in Introduction, rotations about the t-axis
are the only type of Euclidean rotations that can be
considered in H3(−c2).

Consider a profile curve α(u) = (u, h(u), 0) in the
tx-plane. Denote ϕ(u, v) as the rotation of α(u)
about the t-axis through an angle v. Then,

ϕ(u, v) = (u, h(u) cos v, h(u) sin v). (8)

The quantities E, F , and G are calculated to be

E = e−2cu{e2cu + (h′(u))2},
F = 0,

G = e−2cuh(u).

If we require ϕ(u, v) to be conformal, then

e2cu + (h′(u))2 = (h(u))2. (9)

The quantities `,m, n are calculated to be

` = − h”(u)h(u)√
(h(u))2(e2cu + (h′(u))2)

,

m = 0,

n =
(h(u))2√

(h(u))2(e2cu + (h′(u))2)
.
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The mean curvature H is computed to be2.

H =
G`+ En− 2Fm

2(EG− F 2)

=
1

2

−h(u)h′′(u) + e2cu + (h′(u))2

e−2cu(h(u))3
.

If we apply the conformality condition (??), H be-
comes

H =
−h′′(u) + h(u)

2e−2cu(h(u))3
. (10)

Let H = c. Then (10) can be written as

h′′(u)− h(u) + 2ce−2cu(h(u))3 = 0. (11)

Hence, constructing a surface of revolution with H =
c comes down to solving the second order nonlinear
differential equation (11). If c → 0, then (11) be-
comes

h′′(u)− h(u) = 0 (12)

which is a harmonic oscillator. This is the profile
curve for a surface of revolution in E3. (12) has the
general solution

h(u) = c1 coshu+ c2 sinhu.

For c1 = 1, c2 = 0, ϕ(u, v) is given by

ϕ(u, v) = (u, coshu cos v, coshu sin v) (13)

This is a minimal surface of revolution in E3, which
is called a catenoid since it is obtained by rotating a
catenary h(u) = coshu. See Figure 1.

Unfortunately, the author cannot solve (11) ana-
lytically, so we solve it numerically with the aid of
MAPLE.

4 The Illustration of the Limit
of Surfaces of Revolution with
H = c in H3(−c2) as c→ 0

In section 3, it is shown that the limit of surfaces
of revolution with constant mean curvature H = c in
H3(−c2) is a catenoid, a minimal surface of revolution
in E3. Such limiting behavior of surfaces of revolution
with H = c in H3(−c2) is illustrated with graphics
in Figure 2 (H = 1), Figure 3 (H = 1

2 ), Figure 4
(H = 1

4 ), Figure 5 (H = 1
8 ), Figure 6 (H = 1

64 ),
Figure 7 (H = 1

256 ). Figure 7 (b) already looks pretty
close to the catenoid in Figure 1.

2The validity of this formula should not be a concern since
we assume that the surface is conformal.

Figure 1: Catenoid in E3
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(a) Profile curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 2: Constant Mean Curvature H = 1

(a) Profile Curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 3: Constant Mean Curvature H = 1
2
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(a) Profile Curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 4: Constant Mean Curvature H = 1
4

(a) Profile Curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 5: Constant Mean Curvature H = 1
8
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(a) Profile Curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 6: ConstSurface of Revolution in H3(−c2)ant
Mean Curvature H = 1

64

(a) Profile Curve h(u)

(b) Surface of Revolution in H3(−c2)

Figure 7: Constant Mean Curvature H = 1
256
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