Surfaces of Revolution in Hyperbolic 3-Space

Kinsey Zarske

Department of Mathematics, University of Southern Mississippi

MAA LA/MS Regional Meeting, March 1, 2013

Outline

(1) Parametric Surfaces in Hyperbolic 3-Space
(2) Surfaces of Revolution with $\mathrm{CMC} H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
(3) The Illustration of the Limit of Surfaces of Revolution with $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ as $c \rightarrow 0$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Hyperbolic 3 -Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3} be equipped with the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

where c is a constant.

- $\left(\mathbb{R}^{3}, g_{c}\right)$ has constant curvature $-c^{2}$ and is denoted by $\mathbb{H}^{3}\left(-c^{2}\right)$.
- $\mathbb{H}^{3}\left(-c^{2}\right)$ is called the pseudospherical model of hyperbolic 3-space.
- As $c \rightarrow 0, \mathbb{H}^{3}\left(-c^{2}\right)$ flattens out to \mathbb{E}^{3}, Euclidean 3 -space.

Parametric Surfaces in Hyperbolic 3-Space

Hyperbolic 3-Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3} be equipped with the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

where c is a constant.

- $\left(\mathbb{R}^{3}, g_{c}\right)$ has constant curvature $-c^{2}$ and is denoted by $\mathbb{H}^{3}\left(-c^{2}\right)$.
- $\mathbb{H}^{3}\left(-c^{2}\right)$ is called the pseudospherical model of hyperbolic 3-space.
- Ás $c \rightarrow 0, \mathbb{H}^{3}\left(-c^{2}\right)$ flattens out to \mathbb{E}^{3}, Euclidean 3-space.

Parametric Surfaces in Hyperbolic 3-Space

Hyperbolic 3-Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3} be equipped with the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

where c is a constant.

- $\left(\mathbb{R}^{3}, g_{c}\right)$ has constant curvature $-c^{2}$ and is denoted by $\mathbb{H}^{3}\left(-c^{2}\right)$.
- $\mathbb{H}^{3}\left(-c^{2}\right)$ is called the pseudospherical model of hyperbolic 3 -space.
- As $c \rightarrow 0, \mathbb{H}^{3}\left(-c^{2}\right)$ flattens out to \mathbb{E}^{3}, Euclidean 3 -space.

Hyperbolic 3-Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3} be equipped with the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

where c is a constant.

- $\left(\mathbb{R}^{3}, g_{c}\right)$ has constant curvature $-c^{2}$ and is denoted by $\mathbb{H}^{3}\left(-c^{2}\right)$.
- $\mathbb{H}^{3}\left(-c^{2}\right)$ is called the pseudospherical model of hyperbolic 3-space.
- As $c \rightarrow 0, \mathbb{H}^{3}\left(-c^{2}\right)$ flattens out to \mathbb{E}^{3}, Euclidean 3-space.

Conformal Parametric Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is said to be conformal if

$$
\left\langle\varphi_{u}, \varphi_{v}\right\rangle=0,\left|\varphi_{u}\right|=\left|\varphi_{v}\right|=e^{\omega / 2}
$$

where (u, v) is a local coordinate system in M and $\omega: M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

Conformal Parametric Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is said to be conformal if

$$
\left\langle\varphi_{u}, \varphi_{v}\right\rangle=0,\left|\varphi_{u}\right|=\left|\varphi_{v}\right|=e^{\omega / 2}
$$

where (u, v) is a local coordinate system in M and $\omega: M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$
d s_{\varphi}^{2}=e^{\omega}\left\{(d u)^{2}+(d v)^{2}\right\}
$$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

$\mathbb{H}^{3}\left(-c^{2}\right)$ is not a vector space but each tangent space $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$ is, and we can consider cross product on each $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$.

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

$\mathbb{H}^{3}\left(-c^{2}\right)$ is not a vector space but each tangent space $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$ is, and we can consider cross product on each $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$.
Let $\mathbf{v}=v_{1}\left(\frac{\partial}{\partial t}\right)_{p}+v_{2}\left(\frac{\partial}{\partial x}\right)_{p}+v_{3}\left(\frac{\partial}{\partial y}\right)_{p}$,
$\mathbf{w}=w_{1}\left(\frac{\partial}{\partial t}\right)_{p}+w_{2}\left(\frac{\partial}{\partial x}\right)_{p}+w_{3}\left(\frac{\partial}{\partial y}\right)_{p} \in T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$, where
$\left\{\left(\frac{\partial}{\partial t}\right)_{p},\left(\frac{\partial}{\partial x}\right)_{p,}\left(\frac{\partial}{\partial y}\right)_{p}\right\}$ denote the canonical basis for
$T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$. Then:

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

Continued

Definition

The cross product $\mathbf{v} \times \mathbf{w}$ is defined by

$$
\begin{aligned}
\mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}\right. & \left.-v_{3} w_{2}\right)\left(\frac{\partial}{\partial t}\right)_{p} \\
& +e^{2 c t}\left(v_{3} w_{1}-v_{1} w_{3}\right)\left(\frac{\partial}{\partial x}\right)_{p} \\
& +e^{2 c t}\left(v_{1} w_{2}-v_{2} w_{1}\right)\left(\frac{\partial}{\partial y}\right)_{p}
\end{aligned}
$$

where $p=(t, x, y) \in \mathbb{H}^{3}\left(-c^{2}\right)$.

The Mean Curvature of a Conformal Parametric Surface in

 $\mathbb{H}^{3}\left(-c^{2}\right)$If a parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is conformal, the mean curvature H is computed by the formula

$$
H=\frac{G \ell+E \mathfrak{n}-2 F \mathfrak{m}}{2\left(E G-F^{2}\right)}
$$

where

$$
\begin{aligned}
E & =\left\langle\varphi_{u}, \varphi_{u}\right\rangle, F=\left\langle\varphi_{u}, \varphi_{v}\right\rangle, G=\left\langle\varphi_{v}, \varphi_{v}\right\rangle \\
\ell & =\left\langle\varphi_{u u}, N\right\rangle, \mathfrak{m}=\left\langle\varphi_{u v}, N\right\rangle, \mathfrak{n}=\left\langle\varphi_{v v}, N\right\rangle
\end{aligned}
$$

and $N=\frac{\varphi_{u} \times \varphi_{v}}{\left\|\varphi_{u} \times \varphi_{v}\right\|}$ is a unit normal vector field on φ.

Rotations in $\mathbb{H}^{3}\left(-c^{2}\right)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^{3}\left(-c^{2}\right)$.
- The rotation of a profile curve $\alpha(u)=(u, h(u), 0)$ in the $t x$-plane about the t-axis through an angle v :

$$
\varphi(u, v)=(u, h(u) \cos v, h(u) \sin v) .
$$

Rotations in $\mathbb{H}^{3}\left(-c^{2}\right)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^{3}\left(-c^{2}\right)$.
- The rotation of a profile curve $\alpha(u)=(u, h(u), 0)$ in the $t x$-plane about the t-axis through an angle v :

$$
\varphi(u, v)=(u, h(u) \cos v, h(u) \sin v) .
$$

Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$ is computed to be

$$
H=\frac{-h^{\prime \prime}(u)+h(u)}{2 e^{-2 c u}(h(u))^{3}} .
$$

- By setting $H=c$, we obtain the second order non-linear differential equation of $h(u)$

$$
h^{\prime \prime}(u)-h(u)+2 c e^{-2 c u}(h(u))^{3}=0 .
$$

Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$ is computed to be

$$
H=\frac{-h^{\prime \prime}(u)+h(u)}{2 e^{-2 c u}(h(u))^{3}} .
$$

- By setting $H=c$, we obtain the second order non-linear differential equation of $h(u)$

$$
h^{\prime \prime}(u)-h(u)+2 c e^{-2 c u}(h(u))^{3}=0 .
$$

Lawson Correspondence

- There is a one-to-one correspondence, so-called Lawson correspondence, between surfaces of constant mean curvature H_{h} in $\mathbb{H}^{3}\left(-c^{2}\right)$ and surfaces of constant mean curvature $H_{e}=\sqrt{H_{h}^{2}-c^{2}}$ in \mathbb{E}^{3}. [H. Blaine Lawson, Jr., Complete minimal surfaces in S^{3}, Ann. of Math. 92, 335-374 (1970)]
- In particular, there is a one-to-one correspondence between surfaces of constant mean curvature $H=c$ surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ and minimal surfaces in \mathbb{E}^{3}

Lawson Correspondence

- There is a one-to-one correspondence, so-called Lawson correspondence, between surfaces of constant mean curvature H_{h} in $\mathbb{H}^{3}\left(-c^{2}\right)$ and surfaces of constant mean curvature $H_{e}=\sqrt{H_{h}^{2}-c^{2}}$ in \mathbb{E}^{3}. [H. Blaine Lawson, Jr., Complete minimal surfaces in S^{3}, Ann. of Math. 92, 335-374 (1970)]
- In particular, there is a one-to-one correspondence between surfaces of constant mean curvature $H=c$ surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ and minimal surfaces in \mathbb{E}^{3}.

Limit Behavior of Surfaces of Revolution with CMC H=c as $c \rightarrow 0$

- If $c \rightarrow 0$, then the differential equation of $h(u)$ becomes

$$
h^{\prime \prime}(u)-h(u)=0,
$$

which is a harmonic oscillator. Its solution is

$$
h(u)=c_{1} \cosh u+c_{2} \sinh u .
$$

- For $c_{1}=1, c_{2}=0$, we obtain the catenoid
$\varphi(u, v)=(u, \cosh u \cos v, \cosh u \sin v)$.
the minimal surface of revolution in \mathbb{E}^{3}.

Limit Behavior of Surfaces of Revolution with CMC $H=c$ as $c \rightarrow 0$

- If $c \rightarrow 0$, then the differential equation of $h(u)$ becomes

$$
h^{\prime \prime}(u)-h(u)=0,
$$

which is a harmonic oscillator. Its solution is

$$
h(u)=c_{1} \cosh u+c_{2} \sinh u .
$$

- For $c_{1}=1, c_{2}=0$, we obtain the catenoid

$$
\varphi(u, v)=(u, \cosh u \cos v, \cosh u \sin v),
$$

the minimal surface of revolution in \mathbb{E}^{3}.

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{\mathbf{3}}\left(-c^{\mathbf{2}}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Catenoid in \mathbb{E}^{3}

Figure: Catenoid in \mathbb{E}^{3}

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Surface of Revolution with CMC $H=1$ in $\mathbb{H}^{3}(-1)$

Figure: $\mathrm{CMC} H=1$: Profile Curve

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Surface of Revolution with CMC $H=1$ in $\mathbb{H}^{3}(-1)$

Continued

Figure: CMC $H=1$: Surface of Revolution

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Surface of Revolution with CMC $H=\frac{1}{4}$ in $\mathbb{H}^{3}\left(-\frac{1}{16}\right)$

Figure: CMC $H=\frac{1}{4}$: Surface of Revolution

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Surface of Revolution with CMC $H=\frac{1}{8}$ in $\mathbb{H}^{3}\left(-\frac{1}{64}\right)$

Figure: CMC $H=\frac{1}{8}$: Surface of Revolution

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Surface of Revolution with CMC $H=\frac{1}{256}$ in $\mathbb{H}^{3}\left(-\frac{1}{65536}\right)$

Figure: CMC $H=\frac{1}{256}$: Surface of Revolution

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Animations

- Animation of Profile Curves $h(u)$ http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC H =c in $\mathbb{H}^{3}\left(-c^{2}\right)$
http://www.math. usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^{3})

Animations

- Animation of Profile Curves $h(u)$ http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
http://www.math.usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^{3})

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Questions

Questions?

Any Questions?

