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The Hilbert Space of Quantum States

The state of a quantum mechanical system is described by a

vector in a Hilbert space.

State vectors are written by the notation |ψ〉. |ψ〉 is called a

ket vector.

The dual vector (a 1-form) of a ket vector |ψ〉 is denoted by

〈ψ| and called a bra vector.

The squared norm 〈ψ|ψ〉 is called a braket. In quantum

mechanics, 〈ψ|ψ〉 measures the probability of getting a

particle in the state |ψ〉.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Hilbert Space of Quantum States

The state of a quantum mechanical system is described by a

vector in a Hilbert space.

State vectors are written by the notation |ψ〉. |ψ〉 is called a

ket vector.

The dual vector (a 1-form) of a ket vector |ψ〉 is denoted by

〈ψ| and called a bra vector.

The squared norm 〈ψ|ψ〉 is called a braket. In quantum

mechanics, 〈ψ|ψ〉 measures the probability of getting a

particle in the state |ψ〉.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Hilbert Space of Quantum States

The state of a quantum mechanical system is described by a

vector in a Hilbert space.

State vectors are written by the notation |ψ〉. |ψ〉 is called a

ket vector.

The dual vector (a 1-form) of a ket vector |ψ〉 is denoted by

〈ψ| and called a bra vector.

The squared norm 〈ψ|ψ〉 is called a braket. In quantum

mechanics, 〈ψ|ψ〉 measures the probability of getting a

particle in the state |ψ〉.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Hilbert Space of Quantum States

The state of a quantum mechanical system is described by a

vector in a Hilbert space.

State vectors are written by the notation |ψ〉. |ψ〉 is called a

ket vector.

The dual vector (a 1-form) of a ket vector |ψ〉 is denoted by

〈ψ| and called a bra vector.

The squared norm 〈ψ|ψ〉 is called a braket. In quantum

mechanics, 〈ψ|ψ〉 measures the probability of getting a

particle in the state |ψ〉.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

2-State System

A 2-state system (the basic building block of a quantum

memory register) can, by de�nition, be in one of two possible

states.

Its state vector |ψ〉 has exactly two componenets:

|ψ〉= ω0|ψ0〉+ ω1|ψ1〉= ω0

(
1

0

)
+ ω1

(
0

1

)
=

(
ω0

ω1

)
,

where ω0,ω1 ∈ C and the eigenstates (pure states) |ψ0〉, |ψ1〉
form an orthonormal basis for the Hilbert space.
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Schrödinger's Cat
Erwin Schrödinger's Gedankenexperiment

Figure: Schrödinger's Cat

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

Schrödinger's Cat
Compound States

Figure: Half-Life and Half-Death
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Spin-12 Particles

Spin is an intrinsic property of particles obtained from the

quantization of angular momentum of particles.

Fermions such as electrons have spin-1
2
. In fact electron was

the �rst particle of which spin property was observed

experimentally.
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Spin Operator

The spin projection operator Sz

Sz =
h̄

2
σz =

h̄

2

(
1 0

0 −1

)
.

Sz has two eigenvalues ± h̄
2
, which correspond to the

eigenstates (
1

0

)
= |+ 1

2
〉= | ↑〉,(

0

1

)
= |− 1

2
〉= | ↓〉.

These two eigenstates form a complete basis for the Hilbert

space describing the spin-1
2
particle. Thus the linear

combinations of these two eigenstates represent all possible

states of the spin. Introduction to Quantum Computing
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Bloch Sphere

Bloch sphere is a geometrical representation of 2-state

quantum mechanical system.

A state vector |ψ〉 has a representation in Bloch sphere as

|ψ〉= cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉,

where 0≤ θ ≤ π, 0≤ φ ≤ 2π.
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Bloch sphere
The Visualization of Bloch Sphere

Figure: Bloch Sphere
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Schrödinger's Equation
The Evolution of a State Vector

If not observed, the quantum mechanical system will undergo

smooth continuous evolution governed by Schrödinger's

equation

i h̄
d |ψ(t)〉

dt
= Ĥ(t)|ψ(t)〉,

where Ĥ(t) is the Hamiltonian operator.
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Schrödinger's Equation
Continued

Equivalently in terms of the temporal evolution of the

amplitudes, we have

i h̄
dωi

dt
= ∑

j

Hij(t)ωj(t).

The Hamiltonian operator Ĥ is required to be Hermitian, i.e.

Ĥ† = Ĥ where Ĥ† = H̄t .
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From Bits to Qubits

In a (hypothetical) quantum computer, each bit can be

represented by the pure state of a 2-state quantum system

such as the spin state of spin-1
2
particle.

For instance we can use the spin-up state |+ 1
2
〉 to represent

the binary value 0 and the spin-down state |− 1
2
〉 to represent

the binary value 1.
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State of a Quantum Memory Register

Each qubit is described by the spin state of a single 2-state

system.

Fermions such as electrons follow Fermi-Dirac statistics, i.e.

only one particle can occupy a quantum state at a given time.

A memory register consists of many such 2-state systems. The

question is how do we describe its state?

The general state of a 2-qubit memory register is given by the

direct product

|ψ(1)〉⊗ |ψ(2)〉= |ψ(1,2)〉.
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State of a Quantum Memory Register
Continued

Let

|ψ(1)〉= ω
(1)
0 |ψ

(1)
0 〉+ ω

(1)
1 |ψ

(1)
1 〉=

(
ω

(1)
0

ω
(1)
1

)
,

|ψ(2)〉= ω
(2)
0 |ψ

(2)
0 〉+ ω

(2)
1 |ψ

(2)
1 〉=

(
ω

(2)
0

ω
(2)
1

)
,

where |ψ(1)
0 〉=

(
1

0

)
, |ψ(1)

1 〉=

(
0

1

)
, |ψ(2)

0 〉=

(
1

0

)
,

|ψ(2)
1 〉=

(
0

1

)
. Then

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

State of a Quantum Memory Register
Continued

|ψ(1,2)〉= |ψ(1)〉⊗ |ψ(2)〉=


ω

(1)
0 ω

(2)
0

ω
(1)
0 ω

(2)
1

ω
(1)
1 ω

(2)
0

ω
(1)
1 ω

(2)
1

=


ω00

ω01

ω10

ω11

 .
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State of a Quantum Memory Register
Continued

The new eigenstates of the composite syste are |00〉, |01〉,
|10〉, |11〉, where

|00〉=


1

0

0

0

 , |01〉=


0

1

0

0

 ,

|10〉=


0

0

1

0

 , |11〉=


0

0

0

1

 .

A general state of a 2-qubit memory register is

|ψ(1,2)〉= ω00|00〉+ ω01|01〉+ ω10|10〉+ ω11|11〉.
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Why Quantum Memory Register is big deal?

The generalization to an n-qubit quantum memory register is

straightforward.

Quantum memory register can store an exponential amount of

classical information in only a polynomial number of qubits by

exploiting the principle of superposition.

For example, the table shows two classical memory registers

storing complementary sequences of bits.

1 0 1 1 0 0 1

0 1 0 0 1 1 0

Table: Two classical memory registers

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

Why Quantum Memory Register is big deal?

The generalization to an n-qubit quantum memory register is

straightforward.

Quantum memory register can store an exponential amount of

classical information in only a polynomial number of qubits by

exploiting the principle of superposition.

For example, the table shows two classical memory registers

storing complementary sequences of bits.

1 0 1 1 0 0 1

0 1 0 0 1 1 0

Table: Two classical memory registers

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

Why Quantum Memory Register is big deal?
Continued

However a single quantum memory register can store both

sequences simultaneously in an equally weighted superposition

of the two states representing each classical input, i.e. the

quantum memory register stores the state

1√
2

(|1011001〉+ |0100110〉).

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

Unitary Evolution
A Pathway to Reversible Computing

If the Hamiltonian Ĥ is time-independent and the computer is

started o� with its memory register in the state |ψ(0)〉, then
the solution of the Schrödinger equation at a given time t is
given by

|ψ(t)〉= e−
i
h̄ Ĥt |ψ(0)〉= Û(t)|ψ(0)〉.

Û(t) = e−
i
h̄ Ĥt is called the evolution operator. Since Ĥ is

Hermitian, Û(t) is a unitary matrix, i.e. Û(t)Û†(t) = I or

equivalently Û−1(t) = ˆU†(t).
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A Quantum Computer is a Reversible Computer

The evolution operator being unitary has a very important

implication. This means that a quantum computer is a

reversible computer.

A reversible computer does not generate heat while performing

computations since it results in no increase of entropy. So a

quantum computer can be a truly energy e�cient computer.

According to Landauer's principle, any logically irreversible

manipulation of information, such as erasing bits of

information, must be accompanied by an increase of entropy.

Each bit of lost information will result in the release of an

amount kT ln2 of heat, where k is the Boltzmann constant

and T is the absolute temperature of the circuit.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

A Quantum Computer is a Reversible Computer

The evolution operator being unitary has a very important

implication. This means that a quantum computer is a

reversible computer.

A reversible computer does not generate heat while performing

computations since it results in no increase of entropy. So a

quantum computer can be a truly energy e�cient computer.

According to Landauer's principle, any logically irreversible

manipulation of information, such as erasing bits of

information, must be accompanied by an increase of entropy.

Each bit of lost information will result in the release of an

amount kT ln2 of heat, where k is the Boltzmann constant

and T is the absolute temperature of the circuit.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

A Quantum Computer is a Reversible Computer

The evolution operator being unitary has a very important

implication. This means that a quantum computer is a

reversible computer.

A reversible computer does not generate heat while performing

computations since it results in no increase of entropy. So a

quantum computer can be a truly energy e�cient computer.

According to Landauer's principle, any logically irreversible

manipulation of information, such as erasing bits of

information, must be accompanied by an increase of entropy.

Each bit of lost information will result in the release of an

amount kT ln2 of heat, where k is the Boltzmann constant

and T is the absolute temperature of the circuit.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer√

NOT Gate

√
NOT is a quantum logical gate.

Two consecutive applications of
√

NOT gate results NOT gate.

√
NOT ·

√
NOT = NOT,

where · denotes the matrix multiplication.

√
NOT gate cannot be de�ned classically.
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NOT Gate as a Unitary Matrix

De�ne the action of the
√

NOT gate as

√
NOT =

[
1+i
2

1−i
2

1−i
2

1+i
2

]
.

√
NOT

√
NOT

†
=

[
1 0

0 1

]
, so
√

NOT is unitary, i.e.
√

NOT

gate is reversible.

√
NOT ·

√
NOT =

[
1+i
2

1−i
2

1−i
2

1+i
2

]
·
[

1+i
2

1−i
2

1−i
2

1+i
2

]
=

[
0 1

1 0

]
≡

NOT.
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The Quantum Nature of
√

NOT Gate

The Truth Table for a single
√

NOT gate is given by

|0〉 →
(
1

2
+

i

2

)
|0〉+

(
1

2
− i

2

)
|1〉

|1〉 →
(
1

2
− i

2

)
|0〉+

(
1

2
+

i

2

)
|1〉.

√
NOT gate has the e�ect of taking states representing

classical bits, |0〉 and |1〉, into mixed states representing

qubits, ω0|0〉+ ω1|1〉.

The inputs for
√

NOT gate need not be pure states |0〉 and |1〉.
Any superposition of |0〉 and |1〉 can be an input for

√
NOT

gate. This aspect is particularly important when we connect

two
√

NOT gates back to back to form a circuit for NOT.
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Any superposition of |0〉 and |1〉 can be an input for

√
NOT

gate. This aspect is particularly important when we connect

two
√

NOT gates back to back to form a circuit for NOT.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Size of the Memory Register

We need two sets of particles to form the Memory Register:

1 One set of particles to record the position of the cursor qubit

that keeps track of the progress of computation.
2 The other set of particles is used to record the answer to the

computation on which the machine is working, i.e. the

evolving state of computation.

If there are k gates and m input quibits, the size of the

memory register is m+k +1 to simulate the entire computer.

For
√

NOT ·
√

NOT circuit, k = 2 and m = 1 so m+k +1 = 4.
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NOT with a 4-Qubit Register

The complete state of the computer (cursor qubits and answer

qubits) is represented as a 24×1 column vector, i.e. the

complete memory register for the quantum computer is

composed of 4 qubits.

Since
√

NOT acts on a single qubit, we need to extend it to√
NOT[4,4]:

√
NOT[4,4]≡ 1̂⊗ 1̂⊗ 1̂⊗

√
NOT.

√
NOT[4,4] is a 24×24 unitary matrix.
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NOT[4,4]

√
NOT[4,4] =



1+i
2

1−i
2

1−i
2

1+i
2

1+i
2

1−i
2

1−i
2

1+i
2

. . .
1+i
2

1−i
2

1−i
2

1+i
2

1+i
2

1−i
2

1−i
2

1+i
2


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The Creation and Annihilation Operators

The creation and annihilation operators are used to move the

cursor forwards and backwards.

Moving the cursor from the ith site to (i +1)th site and

coupling it to the application of the (i +1)th gate operation is

done by

ci+1 ·ai · ˆMi+1.

The creation operator c on a single spin state is

c =

[
0 0

1 0

]
. The annihilation operatora acting on a single

spin state is a =

[
0 1

0 0

]
.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Creation and Annihilation Operators

The creation and annihilation operators are used to move the

cursor forwards and backwards.

Moving the cursor from the ith site to (i +1)th site and

coupling it to the application of the (i +1)th gate operation is

done by

ci+1 ·ai · ˆMi+1.

The creation operator c on a single spin state is

c =

[
0 0

1 0

]
. The annihilation operatora acting on a single

spin state is a =

[
0 1

0 0

]
.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Creation and Annihilation Operators

The creation and annihilation operators are used to move the

cursor forwards and backwards.

Moving the cursor from the ith site to (i +1)th site and

coupling it to the application of the (i +1)th gate operation is

done by

ci+1 ·ai · ˆMi+1.

The creation operator c on a single spin state is

c =

[
0 0

1 0

]
. The annihilation operatora acting on a single

spin state is a =

[
0 1

0 0

]
.

Introduction to Quantum Computing



Quantum Mechanics
Quantum Computing

An Example of a Quantum Circuit
Simulating a Quantum Computer

The Creation and Annihilation Operators
Continued

As a 4-qubit, the creation operator acting on the second of

four qubits is given by

c2 =

[
1 0

0 1

]
⊗
[
0 0

1 0

]
⊗
[
1 0

0 1

]
⊗
[
1 0

0 1

]
.
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The Hamiltonian Operator

De�ne the Hamiltonian operator Ĥ to be

Ĥ =
k

∑
i=0

ci+1 ·ai · M̂i+1 + (ci+1 ·ai · M̂i+1)†.

In
√

NOT ·
√

NOT circuit,

Ĥ = c1 ·
√

NOT + c2 ·a1 ·
√

NOT ·
√

NOT

+ (c1 ·
√

NOT + c2 ·a1 ·
√

NOT ·
√

NOT)†.
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Running the Quantum Computer

The Unitary Evolution Operator Û(t):

Û(t) = exp

(
− i

h̄
Ĥt

)
.

Once a particular initial state of the memory register |ψ(0)〉 is
selected, one can calculate the state of the memory register at

any time t from

|ψ(t)〉= Û(t) · |ψ(0)〉.
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Questions?
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