Bell's Theorem

Dr. Sung Lee

School of Mathematics and Natural Sciences, University of Southern Mississippi
Physics Seminar, September 29, 2023

Outline

(1) Bell's Theorem
(2) Bell Inequality and Quantum Mechanics

Pauli Spin Matrices

- The matrices $\sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { are called the Pauli spin matrices. }
$$

Pauli Spin Matrices

- The matrices $\sigma_{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { are called the Pauli spin matrices. }
$$

- For any 3-dim unit vector \vec{v}, define

$$
\vec{v} \cdot \vec{\sigma}=v_{x} \sigma_{x}+v_{y} \sigma_{y}+v_{z} \sigma z
$$

Then $\vec{v} \cdot \vec{\sigma}=\left(\begin{array}{cc}v_{z} & v_{1}-i v_{2} \\ v_{1}+i v_{2} & -v_{z}\end{array}\right)$ is an observable and it has eigenvalues ± 1. Measurement of this observable is called a measurement of spin along the \vec{v} axis.

Tensor Product

- Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$. Then the tensor product (also called the Kronecker product) is defined by

$$
\begin{aligned}
A \otimes B & =\left(\begin{array}{ll}
a_{11} B & a_{12} B \\
a_{21} B & a_{22} B
\end{array}\right) \\
& =\left(\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right)
\end{aligned}
$$

Tensor Product

- Ex. Let $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$. Then

$$
\begin{aligned}
& |00\rangle=|0\rangle \otimes|0\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=|0\rangle \otimes|1\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& |10\rangle=|1\rangle \otimes|0\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=|1\rangle \otimes|1\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Tensor Product

- Ex. Let $A_{0}=\sigma_{z}$ and $B_{0}=-\frac{\sigma_{x}+\sigma_{z}}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right)$. Then

$$
A_{0} \otimes B_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

Bell Inequality

- Suppose that Alice and Bob are in different locations far away from each other. Tom prepares a pair of particles and send one each to Alice and Bob. Alice performs one of the two possible measurements, say A_{0} and A_{1}, associated with physical properties $P_{A_{0}}$ and $P_{A_{1}}$ of the particle she received. Each of A_{0} and A_{1} has 1 or -1 for the outcomes of measurement. When Bob receives one of the particles, he also performs one of the two possible measurements B_{0} and B_{1}, each of which has outcome 1 or -1 .

Bell Inequality

- Suppose that Alice and Bob are in different locations far away from each other. Tom prepares a pair of particles and send one each to Alice and Bob. Alice performs one of the two possible measurements, say A_{0} and A_{1}, associated with physical properties $P_{A_{0}}$ and $P_{A_{1}}$ of the particle she received. Each of A_{0} and A_{1} has 1 or -1 for the outcomes of measurement. When Bob receives one of the particles, he also performs one of the two possible measurements B_{0} and B_{1}, each of which has outcome 1 or -1 .
- Let us consider $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}=\left(A_{0}+A_{1}\right) B_{0}+\left(A_{0}-A_{1}\right) B_{1}$. Since $A_{0}= \pm 1$ and $A_{1}= \pm 1$, either one of $A_{0}+A_{1}$ and $A_{0}-A_{1}$ is zero and the other is ± 2.

Bell Inequality

- Suppose that Alice and Bob are in different locations far away from each other. Tom prepares a pair of particles and send one each to Alice and Bob. Alice performs one of the two possible measurements, say A_{0} and A_{1}, associated with physical properties $P_{A_{0}}$ and $P_{A_{1}}$ of the particle she received. Each of A_{0} and A_{1} has 1 or -1 for the outcomes of measurement. When Bob receives one of the particles, he also performs one of the two possible measurements B_{0} and B_{1}, each of which has outcome 1 or -1 .
- Let us consider
$A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}=\left(A_{0}+A_{1}\right) B_{0}+\left(A_{0}-A_{1}\right) B_{1}$. Since $A_{0}= \pm 1$ and $A_{1}= \pm 1$, either one of $A_{0}+A_{1}$ and $A_{0}-A_{1}$ is zero and the other is ± 2.
- Bell inequality: $\left\langle A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}\right\rangle \leq 2$

Bell Inequality

The Bell inequality depends on the following two assumptions:

Bell Inequality

The Bell inequality depends on the following two assumptions:
(1) The physical properties $P_{A_{0}}, P_{A_{1}}, P_{B_{0}}, P_{B_{1}}$ have definite values $A_{0}, A_{1}, B_{0}, B_{1}$ which exist independently of observation or measurement. This is called the assumption of realism.
(2) Alice performing her measurement does not influence the result of Bob's measurement. This is called the assumption of locality.

Bell Inequality

The Bell inequality depends on the following two assumptions:
(1) The physical properties $P_{A_{0}}, P_{A_{1}}, P_{B_{0}}, P_{B_{1}}$ have definite values $A_{0}, A_{1}, B_{0}, B_{1}$ which exist independently of observation or measurement. This is called the assumption of realism.
(2) Alice performing her measurement does not influence the result of Bob's measurement. This is called the assumption of locality.
These two assumptions together are known as the assumption of local realism.

Quantum Measurement

- Tom prepares a quantum system of two qubits in the state

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

This entangled quantum state of two qubits (two-qubit state) is called a Bell state, an EPR state, or an EPR pair.

Quantum Measurement

- Tom prepares a quantum system of two qubits in the state

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

This entangled quantum state of two qubits (two-qubit state) is called a Bell state, an EPR state, or an EPR pair.

- He passes the first qubit to Alice, and the second qubit to Bob. Alice measures either one of the observables $A_{0}=\sigma_{z}$, $A_{1}=\sigma_{x}$.

Quantum Measurement

- Tom prepares a quantum system of two qubits in the state

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

This entangled quantum state of two qubits (two-qubit state) is called a Bell state, an EPR state, or an EPR pair.

- He passes the first qubit to Alice, and the second qubit to Bob. Alice measures either one of the observables $A_{0}=\sigma_{z}$, $A_{1}=\sigma_{x}$.
- Bob measures eaither one of the observables

$$
B_{0}=-\frac{\sigma_{x}+\sigma_{z}}{\sqrt{2}}, B_{1}=\frac{\sigma_{x}-\sigma_{z}}{\sqrt{2}}
$$

Quantum Measurement

- Since the system is in the state $|\psi\rangle$, the average value of $A_{0} \otimes B_{0}$ is

$$
\left\langle A_{0} \otimes B_{0}\right\rangle=\langle\psi| A_{0} \otimes B_{0}|\psi\rangle=\frac{1}{\sqrt{2}}
$$

Quantum Measurement

- Since the system is in the state $|\psi\rangle$, the average value of $A_{0} \otimes B_{0}$ is

$$
\left\langle A_{0} \otimes B_{0}\right\rangle=\langle\psi| A_{0} \otimes B_{0}|\psi\rangle=\frac{1}{\sqrt{2}}
$$

- Similarly, the average values of the other observables are given by

$$
\begin{aligned}
& \left\langle A_{0} \otimes B_{1}\right\rangle=\frac{1}{\sqrt{2}},\left\langle A_{1} \otimes B_{0}\right\rangle=\frac{1}{\sqrt{2}} \\
& \left\langle A_{1} \otimes B_{1}\right\rangle=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Quantum Measurement

- By the linearity of expected values, we obtain

$$
\left\langle A_{0} \otimes B_{0}+A_{0} \otimes B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}\right\rangle=2 \sqrt{2} \geq 2
$$

Quantum Measurement

- By the linearity of expected values, we obtain

$$
\left\langle A_{0} \otimes B_{0}+A_{0} \otimes B_{1}+A_{1} \otimes B_{0}-A_{1} \otimes B_{1}\right\rangle=2 \sqrt{2} \geq 2
$$

- What this means is that

QM Violates Bell Inequality!

- The violation of Bell inequality has been confirmed by experiments using photons. That is, Mother Nature does not obey Bell inequality.

QM Violates Bell Inequality!

- The violation of Bell inequality has been confirmed by experiments using photons. That is, Mother Nature does not obey Bell inequality.
- This implies that one or both of the two assumptions for the Bell inequality must be incorrect.

QM Violates Bell Inequality!

- The violation of Bell inequality has been confirmed by experiments using photons. That is, Mother Nature does not obey Bell inequality.
- This implies that one or both of the two assumptions for the Bell inequality must be incorrect.
- Physicists have no consensus as to which of the two assumptions needs to be dropped.

QM Violates Bell Inequality!

- The violation of Bell inequality has been confirmed by experiments using photons. That is, Mother Nature does not obey Bell inequality.
- This implies that one or both of the two assumptions for the Bell inequality must be incorrect.
- Physicists have no consensus as to which of the two assumptions needs to be dropped.
- Lesson: Our common sense intuition about how the world works is not reliable.

Quantum Entanglement and Quantum Nonlocality

- Quantum entanglement appears to imply quantum nonlocality.

Quantum Entanglement and Quantum Nonlocality

- Quantum entanglement appears to imply quantum nonlocality.
- Consider an entangled pair of qubits belonging to Alice and Bob:

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

Quantum Entanglement and Quantum Nonlocality

- Quantum entanglement appears to imply quantum nonlocality.
- Consider an entangled pair of qubits belonging to Alice and Bob:

$$
|\psi\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

- Suppose Alice and Bob are along way from each other.

Quantum Entanglement and Quantum Nonlocality

- Let $|a\rangle$ and $|b\rangle$ be the eigenstates of $\vec{v} \cdot \vec{\sigma}$. Then one can easily show that

$$
|\psi\rangle=\frac{|a b\rangle-|b a\rangle}{\sqrt{2}}
$$

up to an unobservable global phase factor.

Quantum Entanglement and Quantum Nonlocality

- Let $|a\rangle$ and $|b\rangle$ be the eigenstates of $\vec{v} \cdot \vec{\sigma}$. Then one can easily show that

$$
|\psi\rangle=\frac{|a b\rangle-|b a\rangle}{\sqrt{2}}
$$

up to an unobservable global phase factor.

- Alice performs a measurement of spin along the \vec{v} axis on her qubit, i.e. she measures the observable $\vec{v} \cdot \vec{\sigma}$ on her qubit. If Alice receives the result $1(-1)$, she can predict with certainty Bob will receive the result -1 (1) when he measures spin along the \vec{v} axis on his qubit.

La Fin

"Quantum phenomena do not occur in a Hilbert space, they occur in a laboratory."
Asher Peres

