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Hooke’s Law

A force exerted by an elastic cord or by a spring obeys Hooke’s
law F = �kx where x is the displacement from the equilibrium
position.

Figure: Hooke’s Law
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The Differential Equation of Harmonic Motion

From Newton’s second law of motion F = ma = mẍ , the
Hooke’s law can be written as a second order linear differential
equation

mẍ + kx = 0

To study the motion, we must solve this equation. How do we
do that?
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Fun Stuff: Solving the Equation of Harmonic Motion

Notice that the equation of harmonic motion can be viewed
approximately as

ẍ ⇠ �x

This hints us that a solution may be of the form x(t) = e

qt

Try to see if the trial solution works. If it does, what should be
the value of q?
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Harmonic Oscillator

In fact, the trial solution works if q is chosen to be

q = ±i

r
k

m

= ±i!
0

The solution is then

x(t) = e

±i!0t
= cos!

0

t ± i sin!
0

t

This complex solution is not suitable for the physical analysis.
It turns out the real part cos!

0

t and the imaginary part
sin!

0

t are, respectively, also solutions. (Check it for yourself!)
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Harmonic Oscillator
Continued

The superposition of the two real solutions

x(t) = A cos!
0

t + B sin!
0

t

is a solution. Some fancy math theory (linear algebra) tells us
that this covers all possible real solutions, we call it the general
solution.

Using a trigonometric identity x(t) can be written as

x(t) =

p
A

2

+ B

2

cos(!
0

t � ✓
0

)

where ✓
0

= tan

�1

B

A

. Then angle ✓
0

is called the phase.
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Harmonic Motion in Euclidean Plane

The Hooke’s law in two dimensions is given by

m

¨r = �kr

where r(t) = x(t)ê

x

+ y(t)ê

y

is the position vector.

In terms of the components x(t) and y(t), the Hooke’s law
can be written as a system of uncoupled differential equations:

ẍ = �!2

0

x

ÿ = �!2

0

y

With a suitable change of coordinates, it can be shown that
the trajectory of a particle with mass m in the two dimensional
potential V =

1

2

kr

2 where r =

p
x

2

+ y

2 is an ellipse.
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x

+ y(t)ê
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The Lagrangian

The Lagrangian L is defined to be the difference of kinetic and
potential energies of a system

L(x

1

, · · · , x
n

, ẋ
1

, · · · , ẋ
n

, t) = T � V =

X

i

1
2
mẋ

2

i

� V

Hamilton’s principle in classical mechanics asserts that the
motion of the system from time t

1

to t

2

is such that the time
integral (functional)

Z
t2

t1

L(x

1

, · · · , x
n

, ẋ
1

, · · · , ẋ
n

, t)dt

has a stationary point (critical point).
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1

, · · · , ẋ
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The Lagrangian
Continued

Hamilton’s principle is equivalent to the Euler-Lagrange
equation

d

dt

@L

@ẋ
i

� @L

@x
i

= 0

Example. Suppose that F is a conservative force i.e.
F = �dV (x)

dx

. Then
The Euler-Lagrange equation is

d

dt

mẋ � @(�V )

@x
= mẍ � F (x) = 0

which is simply Newton’s second law of motion.
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Harmonic Motion in Hyperbolic Plane

We now consider the same potential V (x , y) = 1

2

k(x

2

+ y

2

) in
hyperbolic plane.

We use the flat chart model of hyperbolic plane R2 with
metric ds

2

= dx

2

+ e

2cx

dy

2. The advantages of working with
the flat chart model are that the resulting equation of
harmonic motion is simpler and that it can be easily seen that
the Euclidean harmonic motion is the limit of hyperbolic
harmonic motion as c ! 0.

In hyperbolic plane, the velocity v of a particle is given by

v =

p
ẋ

2

+ e

2cx

ẏ

2
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Harmonic Motion in Hyperbolic Plane
Continued

Consequently, the Lagrangian L for hamonic motion in
hyperbolic plane is

L(ẋ , ẏ , x , y) =
1
2
m(ẋ

2

+ e

2cx

ẏ

2

)� 1
2
k(x

2

+ y

2

)
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Research Project

1 Use the Lagrangian, obtain the equation of harmonic motion
in hyperbolic plane. (Euler-Lagrange equation.)

2 Solve the resulting equation. If it cannot be solved analytically,
try to solve it numerically.

3 Analyze the solution. What can you tell about the trajectory
of a particle with mass m in harmonic potential in hyperbolic
plane?

4 Make an animation of hyperbolic harmonic motion.
5 Make an animation of hyperbolic harmonic motion at a fixed

time t that approach Euclidean harmonic motion as c ! 0.
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Questions?
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