MAT 167 Calculus I TEST 1

1. Evaluate the limit

$$
\lim _{x \rightarrow-3} \frac{x-8}{4 x^{2}-5 x+8}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x-8}{4 x^{2}-5 x+8} & =\frac{(-3)-8}{4(-3)^{2}-5(-3)+8} \\
& =-\frac{11}{59}
\end{aligned}
$$

2. Evaluate the limit

$$
\lim _{t \rightarrow 1} \frac{t^{2}-1}{t^{2}+4 t-5}
$$

Solution:

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{t^{2}-1}{t^{2}+4 t-5} & =\lim _{t \rightarrow 1} \frac{(t+1)(t-1)}{(t+5)(t-1)} \\
& =\lim _{t \rightarrow 1} \frac{t+1}{t+5} \\
& =\frac{1+1}{1+5}=\frac{1}{3}
\end{aligned}
$$

3. Evaluate the limit, if it exists. If not, state so and explain why.

$$
\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5} & =\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5} \frac{\sqrt{x+4}+3}{\sqrt{x+4}+3} \\
& =\lim _{x \rightarrow 5} \frac{x-5}{(x-5) \sqrt{x+4}+3} \\
& =\lim _{x \rightarrow 5} \frac{1}{\sqrt{x+4}+3} \\
& =\frac{1}{6}
\end{aligned}
$$

4. Evaluate $\lim _{t \rightarrow 0} \frac{\sin 3 t}{\sin 8 t}$

Solution:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sin 3 t}{\sin 8 t} & =\frac{3}{8} \lim _{t \rightarrow 0} \frac{\frac{\sin 3 t}{3 t}}{\frac{\sin 8 t}{8 t}} \\
& =\frac{3}{8}
\end{aligned}
$$

because $\lim _{t \rightarrow 0} \frac{\sin 3 t}{3 t}=1$ and $\lim _{t \rightarrow 0} \frac{\sin 8 t}{8 t}=1$.
5. Find the value of the constant b that makes the following function continous on $(-\infty, \infty)$.

$$
f(x)=\left\{\begin{array}{ccc}
6 x-6 & \text { if } & x \leq 3 \\
-8 x+b & \text { if } & x>3
\end{array}\right.
$$

Solution: If $f(x)$ is continuous at $x=3$, it becomes continuous on $(-\infty, \infty)$. For that to happen, we require that $\lim _{x \rightarrow 3} f(x)=f(3)$ i.e. $-8(3)+b=6(3)-6$ and hence we find $b=36$.
6. Evaluate the following limits.
(a)

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4+5 x^{2}}}{7+7 x}
$$

Solution: Divide the numerator and the denominator by $x=$ $\sqrt{x^{2}}$ to obtain

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{4+5 x^{2}}}{7+7 x} & =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4}{x^{2}}+5}}{\frac{7}{x}+7} \\
& =\frac{\sqrt{5}}{7}
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{6+9 x^{2}}}{8+4 x}
$$

Solution: Recall that $\sqrt{x^{2}}=|x|$. Since $x \rightarrow-\infty, x<0$ and so $\sqrt{x^{2}}=-x$. Divide the numerator and the denominator by $-x=\sqrt{x^{2}}$ to obtain

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{4+5 x^{2}}}{7+7 x} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{\frac{4}{x^{2}}+5}}{-\frac{7}{x}-7} \\
& =\frac{\sqrt{5}}{-7}=-\frac{\sqrt{5}}{7}
\end{aligned}
$$

7. Evaluate the following limits:
(a)

$$
\lim _{x \rightarrow \infty} \frac{11 x^{3}-4 x^{2}-2 x}{10-5 x-9 x^{3}}
$$

Solution: Divide the numerator and the denominator of the function by x^{3} to obtain

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{11 x^{3}-4 x^{2}-2 x}{10-5 x-9 x^{3}} & =\lim _{x \rightarrow \infty} \frac{11-\frac{4}{x}-\frac{2}{x^{2}}}{\frac{10}{x^{3}}-\frac{5}{x^{2}}-9} \\
& =-\frac{11}{9}
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{11 x^{3}-4 x^{2}-2 x}{10-5 x-9 x^{3}}
$$

Solution: Divide the numerator and the denominator of the function by x^{3} to obtain

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{11 x^{3}-4 x^{2}-2 x}{10-5 x-9 x^{3}} & =\lim _{x \rightarrow-\infty} \frac{11-\frac{4}{x}-\frac{2}{x^{2}}}{\frac{10}{x^{3}}-\frac{5}{x^{2}}-9} \\
& =-\frac{11}{9}
\end{aligned}
$$

8. Evaluate the following limit.

$$
\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}}
$$

Solution: Dividing the numerator and the denominator of the function by x^{5}, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{4}}+\frac{1}{x^{2}}+1}{\frac{1}{x^{5}}-\frac{1}{x^{3}}+\frac{1}{x}} \\
& =\infty
\end{aligned}
$$

9. Evaluate the following limit.

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-5 x^{2}+3}{x^{5}+3 x^{3}}
$$

Solution: Dividing the numerator and the denominator of the function by x^{5}, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{4}-5 x^{2}+3}{x^{5}+3 x^{3}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{5}{x^{3}}+\frac{3}{x^{5}}}{1+\frac{3}{x^{2}}} \\
& =0
\end{aligned}
$$

10. (a) Use the definition of the derivative to compute the derivative of $f(x)=1-x^{2}$ at $x=3$.

Solution:

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-2(3+h)^{2}-\left(1-2(3)^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-2\left(9+6 h+h^{2}\right)+17}{h} \\
& =\lim _{h \rightarrow 0} \frac{-17-12 h-2 h^{2}+17}{h} \\
& =\lim _{h \rightarrow 0} \frac{-12 h-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-12-2 h) \\
& =-12
\end{aligned}
$$

(b) Use the definition of the derivative to compute the derivative of $f(x)=1-x^{2}$ at an arbitrary point x.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-2(x+h)^{2}-\left(1-2 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-2\left(x^{2}+2 h x+h^{2}\right)-1+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 h x-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-4 x-2 h) \\
& =-4 x
\end{aligned}
$$

(c) Find the slope of tangent line to the graph $y=f(x)$ when $x=2$.

Solution: The slope of tangent line is

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{9-(2+h)^{2}-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{9-\left(4+4 h+h^{2}\right)-5}{h} \\
& =\lim _{h \rightarrow 0}(-4-h) \\
& =-4
\end{aligned}
$$

(d) Find an equation for the tangent to the curve $f(x)=1-2 x^{2}$ at $x=5$.
Solution: The equation of tangent to $y=f(x)$ at $x=a$ is

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

Hence we have

$$
y-(-49)=-20(x-5)
$$

i.e. $y=-20 x+149$.
11. The limit below represents a derivative $f^{\prime}(a)$. Find $f(x)$ and a.

$$
\lim _{h \rightarrow 0} \frac{(5+h)^{3}-125}{h}
$$

Solution: Comparing the given limit with $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, we find

$$
f(x)=x^{3}, a=5
$$

