MAT 167 Calculus I TEST 2

1. For which value of x does the graph of $f(x)=x^{3}+3 x^{2}+3 x+2$ have a horizontal tangent?
Solution: The graph of $f(x)$ has a horizontal tangent when $f^{\prime}(x)=$ 0. $f^{\prime}(x)=3 x^{2}+6 x+3$ and set $3 x^{2}+6 x+3=0$ which is equivalent to $x^{2}+2 x+1=(x+1)^{2}=0$. The equation has only one solution $x=-1$ and therefore, the graph of $f(x)$ has a horizontal tangent at $x=-1$.
2. Differentiate the following function:

$$
f(t)=\sqrt{t}-\frac{1}{\sqrt{t}}
$$

Solution: $f(t)$ can be written as $f(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$. Use the Power Rule $\left(x^{n}\right)^{\prime}=n x^{n-1}$ to obtain

$$
f^{\prime}(t)=\frac{1}{2} t^{-\frac{1}{2}}+\frac{1}{2} t^{-\frac{3}{2}}=\frac{1}{2 \sqrt{t}}+\frac{1}{2 t \sqrt{t}}
$$

3. Differentiate $f(x)=\frac{x^{3}-5 x+3}{x^{3}}$.

Solution: $f(x)$ can be written as

$$
f(x)=1-\frac{5}{x^{2}}+\frac{3}{x^{3}}=1-5 x^{-2}+3 x^{-3}
$$

Hence,

$$
f^{\prime}(x)=10 x^{-3}-9 x^{-4}=\frac{10}{x^{3}}-\frac{9}{x^{4}}
$$

4. If $f(x)=\sqrt{x} \sin x$, find $f^{\prime}(x)$.

Solution: Use the Product Rule to find

$$
\begin{aligned}
f^{\prime}(x) & =(\sqrt{x})^{\prime} \sin x+\sqrt{x}(\sin x)^{\prime} \\
& =\frac{1}{2 \sqrt{x}} \sin x+\sqrt{x} \cos x
\end{aligned}
$$

5. Let $f(t)=\left(t^{2}+6 t+4\right)\left(5 t^{2}+5\right)$.
(a) Find $f^{\prime}(t)$.

Solution: Use the Product Rule to obtain

$$
\begin{aligned}
f^{\prime}(t) & =\left(t^{2}+6 t+4\right)^{\prime}\left(5 t^{2}+5\right)+\left(t^{2}+6 t+4\right)\left(5 t^{2}+5\right)^{\prime} \\
& =(2 t+6)\left(5 t^{2}+5\right)+\left(t^{2}+6 t+4\right)(10 t) \\
& =10\left(2 t^{3}+9 t^{2}+5 t+3\right)
\end{aligned}
$$

Note: For WebWork, the last step is not required.
(b) Find $f^{\prime}(2)$.

Solution: $f^{\prime}(2)=10\left(2(2)^{3}+9(2)^{2}+5(2)+3\right)=650$
6. Let $f(x)=\frac{3 x^{2}-8 x+4}{3 x^{2}+6 x+4}$. Evaluate $f^{\prime}(x)$ at $x=4$.

Solution: Use the Quotient Rule to obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(3 x^{2}-8 x+4\right)^{\prime}\left(3 x^{2}+6 x+4\right)-\left(3 x^{2}-8 x+4\right)\left(3 x^{2}+6 x+4\right)^{\prime}}{\left(3 x^{2}+6 x+4\right)^{2}} \\
& =\frac{(6 x-8)\left(3 x^{2}+6 x+4\right)-\left(3 x^{2}-8 x+4\right)(6 x+6)}{\left(3 x^{2}+6 x+4\right)^{2}} \\
& =\frac{42 x^{2}-56}{\left(3 x^{2}+6 x+4\right)^{2}}
\end{aligned}
$$

(Note: For WebWork, the last step is not required.) Hence,

$$
f^{\prime}(4)=\frac{42(4)^{2}-56}{\left(3(4)^{2}+6(4)+4\right)^{2}}=\frac{616}{5776}=\frac{77}{722}
$$

7. If $f(x)=\frac{2 \sin x}{3+\cos x}$, find $f^{\prime}(x)$.

Solution: Use the Quotient ruel to obtain

$$
\begin{aligned}
f^{\prime}(x) & =2 \frac{(\sin x)^{\prime}(3+\cos x)-\sin x(3+\cos x)^{\prime}}{(3+\cos x)^{2}} \\
& =2 \frac{\cos x(3+\cos x)-\sin x(-\sin x)}{(3+\cos x)^{2}} \\
& =2 \frac{3 \cos x+1}{(3+\cos x)^{2}}
\end{aligned}
$$

8. Differentiate $y=\sin 6 x$.

Solution: Let $u=6 x$. Then $y=\sin u$. By the Chain rule

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x} \\
& =(\cos u) 6=6 \cos 6 x
\end{aligned}
$$

9. Differentiate $f(t)=\ln (\cos t)$.

Solution: Let $y=\ln (\cos t)$ and $u=\cos t$. Then $y=\ln u$. By the Chain ruel,

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d y}{d u} \frac{d u}{d t} \\
& =\frac{1}{u}(-\sin t) \\
& =-\frac{\sin t}{\cos t} \\
& =-\tan t
\end{aligned}
$$

10. Let $f(x)=\sqrt{5 x^{2}+4 x+5}$.
(a) Find $f^{\prime}(x)$.

Solution: Let $y=\sqrt{5 x^{2}+4 x+5}$ and $u=5 x^{2}+4 x+5$. Then $y=\sqrt{u}$. By the Chain Rule,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \frac{d u}{d x} \\
& =\frac{1}{2 \sqrt{u}}(10 x+4) \\
& =\frac{5 x+2}{\sqrt{5 x^{2}+4 x+5}}
\end{aligned}
$$

(b) Find $f^{\prime}(3)$.

Solution:

$$
f^{\prime}(3)=\frac{5(3)+2}{\sqrt{5(3)^{2}+4(3)+5}}=\frac{17}{\sqrt{62}}
$$

11. If $83+2 f(x)+9 x^{2}(f(x))^{3}=0$ and $f(-3)=-1$, find $f^{\prime}(-3)$.

Solution: Differentiate $83+2 f(x)+9 x^{2}(f(x))^{3}=0$ with respect to x to obtain

$$
2 f^{\prime}(x)+18 x(f(x))^{3}+27 x^{2}(f(x))^{2} f^{\prime}(x)=0
$$

Plugging in $x=-3$ with $f(-3)=-1$, we have
$2 f^{\prime}(-3)+18(-3)(-1)^{3}+27(-3)^{2}(-1)^{2} f^{\prime}(-3)=245 f^{\prime}(-3)+54=0$
Hence, $f^{\prime}(-3)=-\frac{54}{245}$.
12. Find an equaton of the line tangent to the curve defined by $x^{4}+$ $5 x y+y^{2}=7$ at the point $(1,1)$.
Solution: Use the Implicit Differentiation to obtain

$$
4 x^{3}+5 y+5 x y^{\prime}+2 y y^{\prime}=0
$$

Solve the resulting equation for y^{\prime}.

$$
y^{\prime}=-\frac{4 x^{3}+5 y}{5 x+2 y}
$$

Thus

$$
\left[\frac{d y}{d x}\right]_{(1,1)}=-\frac{4(1)^{3}+5(1)}{5(1)+2(1)}=-\frac{9}{7}
$$

The equation of tangent line is

$$
y-1=-\frac{9}{7}(x-1)
$$

i.e.

$$
y=-\frac{9}{7} x+\frac{16}{7}
$$

13. Let $f(x)=x^{8 x}$. Use logarithmic differentiation to determine the derivative.

Solution: Let $y=x^{8 x}$. Then

$$
\ln y=\ln x^{8 x}=8 x \ln x
$$

Differentiating this we obtain

$$
\frac{1}{y} y^{\prime}=8 \ln x+8 x\left(\frac{1}{x}\right)=8 \ln x+8
$$

Therefore,

$$
y^{\prime}=y(8 \ln x+8)=x^{8 x}(8 \ln x+8)
$$

14. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a constant rate of $9 \mathrm{mi}^{2} / \mathrm{hr}$. How rapidly is raidus of the spill increasing when the area is $8 \mathrm{mi}^{2}$?
Solution: Differentiating $A=\pi r^{2}$ with respect to t, we obtain

$$
\frac{d}{d t} A=2 \pi r \frac{d r}{d t}
$$

Thus

$$
\frac{d r}{d t}=\frac{1}{2 \pi r} \frac{d A}{d t}
$$

When $A=8 \mathrm{mi}^{2}, r=\sqrt{\frac{8}{\pi}}=2 \sqrt{\frac{2}{\pi}}$. Hence,

$$
\frac{d r}{d t}=\frac{1}{4 \pi \sqrt{\frac{2}{\pi}}} 9=\frac{9}{4 \sqrt{2 \pi}} \mathrm{mi} / \mathrm{hr}
$$

