MAT 167 Calculus I TEST 3

1. The raidus of a circular disk is given as 29 cm with a maximal error in measurement of 0.3 cm . Use differentials to estimate the following.
(a) The maximum error in the calculate area of the disk.

Solution: Differentiate $A=\pi r^{2}$ with respect to r to obtain

$$
d A=2 \pi r d r
$$

Since $d r \leq 0.3, d A \leq 2 \pi(29)(0.3)=17.4 \mathrm{~cm}^{2}$.
(b) The relative maximum error.

Solution:

$$
\frac{d A}{A} \leq \frac{2 \pi(29)(0.3)}{\pi(29)^{2}}=\frac{2(0.3)}{29} \approx 0.02069
$$

(c) The percentage error in that case.

Solution: $0.02069 \times 100=2.069 \%$
2. Find the linear approximation of $f(x)=\ln x$ at $x=1$ and use it to estimate $\ln (1.11)$.
Solution: With $a=1$ and $f^{\prime}(x)=\frac{1}{x}$,

$$
\begin{aligned}
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =x-1
\end{aligned}
$$

Hence $\ln (1.11) \approx L(1.11)=1.11-1=0.11$.
3. Answer the following questions.
(a) Find differential of the function $y=\left(x^{2}+2\right)^{3}$.

Solution: $d y=6 x\left(x^{2}+2\right)^{2} d x$.
(b) When $x=2$ and $d x=0.05$, compute the differential.

Solution: $d y=6(2)\left(2^{2}+2\right)^{2}(0.05)=21.6$
4. Find the absolute maximum and the absolute minimum values of the function

$$
f(x)=x^{4}-98 x^{2}+11,-6 \leq x \leq 15
$$

Solution: $f^{\prime}(x)=4 x^{3}-196 x=4 x\left(x^{2}-49\right)$. Setting $f^{\prime}(x)=0$ we find critical points $x=-7,0,7$. Now

$$
\begin{aligned}
f(-7) & =-2390 \\
f(-6) & =-2221 \\
f(0) & =11 \\
f(7) & =2390 \\
f(15) & =28586
\end{aligned}
$$

Therefore, the abolute maximum value of $f(x)$ is $f(15)=28586$ and the absolute minimum value of $f(x)$ is $f(\pm 7)=-2390$.
5. At $2: 00 \mathrm{pm}$ a car's speedometer reads 30 mph and at $2: 10 \mathrm{pm}$ it reads 35 mph . Use the Mean Value Theorem to find an acceleration the car must achieve.
Solution: According to the Mean Value Theorem the car's acceleration at some point has to be the same as the average rate of change of velocity

$$
\frac{35-30}{2+\frac{1}{6}-2}=\frac{5}{\frac{1}{6}}=30 \mathrm{mi} / \mathrm{h}^{2}
$$

6. Find all number c that satisfy the conclusion of the Mean Value Theorem for the following function and interval.

$$
f(x)=3 x^{2}+2 x+6,[-1,1]
$$

Solution: By the Mean Value Theorem there is a number $-1<c<$ 1 such that $\frac{f(1)-f(-1)}{1-(-1)}=f^{\prime}(c) . f^{\prime}(c)=6 c+2$ and $\frac{f(1)-f(-1)}{1-(-1)}=$ $\frac{3+2+6-(3-2+6)}{2}=2$. Hence solving $6 c+2=2$ we find $c=0$. Figure 1 illustrates the Mean Value Theorem being satisfied for the given function with the c value we found.

Figure 1: The Mean Value Theorem
7. Let $f(x)=x^{3}-18 x^{2}+81 x-4$. Find the open intervals on which f is increasing (decreasing). Then determine the x-coordinates of all relative maxima (minima).

Solution:

$$
f^{\prime}(x)=3 x^{2}-36 x+81=3\left(x^{2}-12 x+27\right)=3(x-3)(x-9)
$$

Setting $f^{\prime}(x)>0$ we find the intervals $(-\infty, 3) \cup(9, \infty)$ on which f is increasing. Setting $f^{\prime}(x)<0$ we find the interval $(3,9)$ on which f is decreasing. Since at the critical point $x=3 f$ changes from increasing to decreasing, f assumes a relative maximum at $x=3$. Since at the critical point $x=9 f$ changes from decreasing to increasing f assumes a relative minimum at $x=9$.
8. Let $f(x)=-x^{4}-4 x^{3}+6 x-4$. Find the open intervals on which f is concave up(down). Then determine the x-coordinates of all inflection points of f.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =-4 x^{3}-12 x^{2}+6 \\
f^{\prime \prime}(x) & =-12 x^{2}-24 x \\
& =-12 x(x+2)
\end{aligned}
$$

Setting $f^{\prime \prime}(x)>0$ we find the interval $(-2,0)$ on which f is concave up and setting $f^{\prime \prime}(x)<0$ we find the intervals $(-\infty,-2) \cup(0, \infty)$ on which f is concave down. Hence the x-coordinates of inflection points are $x=-2,0$.
9. A box with an open top has vetical sides, a square bottom, and a volume of 256 cubic centimeters. If the box has the least possible surface area, find its dimensions.

Solution: Let x be the length of the base and y be the height. Then the volume is $x^{2} y=256$ and the surface area is $A=x^{2}+4 x y$. Solve the volume for y to obtain $y=\frac{256}{x^{2}}$. Plugging this into A, we write it as a function of a single variable x :

$$
\begin{gathered}
A(x)=x^{2}+\frac{1024}{x} \\
A^{\prime}(x)=2 x-\frac{1024}{x^{2}}=2\left(x-\frac{517}{x^{2}}\right)
\end{gathered}
$$

Setting $A^{\prime}(x)=0$ we find $x=8$. Since $A^{\prime \prime}(x)=2\left(1+\frac{1024}{x^{3}}\right)>0$ for all $x>0, A(8)$ is the absolute minimum. Therefore the require dimensions are $8 \mathrm{~cm} \times 8 \mathrm{~cm} \times 4 \mathrm{~cm}$.
10. If 1400 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution: Let x be the length of the base and y be the height. Then the surface area is $x^{2}+4 x y=1400$ and the volume is $V=x^{2} y$. Solve the area for y to obtain $y=\frac{1400-x^{2}}{4 x}$. Plugging this into V we write V as a function of a single variable x :

$$
V(x)=\frac{1}{4}\left(1400 x-x^{3}\right)
$$

$V^{\prime}(x)=\frac{1}{4}\left(1400-3 x^{3}\right)$ and setting it equal to 0 we find $x=\sqrt{\frac{1400}{3}}$. Since $V^{\prime \prime}(x)=-\frac{3}{2} x<0$ for all $x>0, V\left(\sqrt{\frac{1400}{3}}\right) \approx 5041 \mathrm{~cm}^{3}$ is the absolute maximum.

