MAT 168 Calculus II TEST 2

1. Find the area of the region betwen the curves y = |x|and y = x2—2.

Solution: From the picture in Figure 1, the area A is

Figure 1: The graphs of y = |x| (in red) and y = x2 — 2 (in blue).
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2. Sketch the region enclosed by the given curves. Decide whether to
integrate with respect to x or y. Then find the area of the region.

y=7x, y=5x>

Solution: The equation 5x2 = 7x has solutions x = 0, % From the
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Figure 2: The graphs of y = 7x (in red) and y = 5x2 (in blue).

picture in Figure 2, the area A is
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3. Find the volume of te solid formed by rotating the region enclosed
by
x=0,x=1, y=0, y=4+x2

about the x-axis.

Solution: The volume V is

-

Figure 3: The enclosed region.

1
V= J (4 + x2)?dx
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4. Find the volume of the solid obtained by rotating the region bounded
by
x=5y% y=1,x=0



about the y-axis.

Solution: The volume V is
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Figure 4: The bounded region.

1
V= J n(5y%)dy
0

1
= ZSHJ y*dy
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5. Using disks or washers, find the volume of the solid obtained by
rotating the region bounded by the curves y = x2 and x = y? about
the x-axis.

Solution: The volume V is
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Figure 5: The bounded region.

1
V= J nl(vx)? = (x*)*1dx
0

1
=n| [x—x%]dx
0

6. Using disks or washers, find the volume of the solid obtained by
rotating the region bounded by the curves y? = x and x = 2y about
the y-axis.

Solution: The volume V is



0

Figure 6: The bounded region.
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V=J nl(2y)? = (y*)*1dy
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7. Use the method of cylindrical shells to find the volume of the solid
obtained by rotating the region bounded by the curves x = 4y2—y?>
and x = 0 about the x-axis.

Solution: The volume V is



Figure 7: The bounded region.

4
V= J 2my(4y*—y*)dy
0

4
=2n J (4y° —yHdy
0

8. Use the method of cylindrical shells to find the volume of the solid
obtained by rotating the region bounded by the curves y = x2, y =
0, x =—2, and x = —1 about the y-axis.

Solution: Note in this case since —2 < x < —1, x < 0 and so the
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Figure 8: The bounded region.

radius of cylindrical shell at each x is —x. Hence the volume is
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V= f 2m(—x)(x?)dx
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9. Find the exact length of the curve
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Solution: y’ = % — 55 and
9 2
N x° 1
1+(y") _1+(? —2)

Hence, the length of the curve L is

1
L =J 14+ (y)?dx
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10. Find the area of the surface otained by rotating the curve
y=v6x

from x = 0 to x = 8 about the x-axis.

Solution: y’ = ‘/% and 1+ (y')> =1+ ==. Hence the surface area



Ais

8
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=43 nf vudu (with substitution u = 2x + 3)
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