Doing Quantum Physics with Split-Complex Numbers

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

Mathematics-Physics Joint Colloquium, February 21, 2014

Outline

2 Complex Numbers are for Light

3 Quantum Physics with Split-Complex Numbers

Path Integral

 In quantum mechanics, the amplitude of a particle to propagate from a point q_I to a point q_F in time T is given by

$$\langle q_F | e^{-\frac{i}{\hbar}\hat{H}T} | q_I \rangle = \int Dq(t) e^{\frac{i}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• $L(\dot{q},q)$ is the Lagrangian

$$L(\dot{q},q) = \frac{m}{2}\dot{q}^2 - V(q)$$

• Dq(t) is the Feynman measure given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{-im\hbar}{2\pi\delta t} \right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k \right)$$

where $\delta t = \frac{T}{N}$.

Path Integral

 In quantum mechanics, the amplitude of a particle to propagate from a point q_I to a point q_F in time T is given by

$$\langle q_F | e^{-\frac{i}{\hbar}\hat{H}T} | q_I \rangle = \int Dq(t) e^{\frac{i}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• $L(\dot{q},q)$ is the Lagrangian

$$L(\dot{q},q) = \frac{m}{2}\dot{q}^2 - V(q)$$

• Dq(t) is the Feynman measure given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{-im\hbar}{2\pi\delta t} \right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k \right)$$

where $\delta t = \frac{T}{N}$.

Path Integral

 In quantum mechanics, the amplitude of a particle to propagate from a point q_I to a point q_F in time T is given by

$$\langle q_F | e^{-\frac{i}{\hbar}\hat{H}T} | q_I \rangle = \int Dq(t) e^{\frac{i}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• $L(\dot{q},q)$ is the Lagrangian

$$L(\dot{q},q) = \frac{m}{2}\dot{q}^2 - V(q)$$

• Dq(t) is the Feynman measure given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{-im\hbar}{2\pi\delta t} \right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k \right)$$

where $\delta t = \frac{T}{N}$.

- The path integral is taken over all possible paths from q_I to q_F in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand.
- *i* is the problem!

- The path integral is taken over all possible paths from q_I to q_F in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand.
- *i* is the problem!

- The path integral is taken over all possible paths from q_I to q_F in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand.
- *i* is the problem!

Euclideanisation

- Wick rotation t → it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$\langle q_F | e^{-rac{i}{\hbar}\hat{H}T} | q_I
angle = \int Dq(t) e^{-rac{1}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Euclideanisation

- Wick rotation t → it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$\langle q_F | e^{-rac{i}{\hbar}\hat{H}T} | q_I
angle = \int Dq(t) e^{-rac{1}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Euclideanisation

- Wick rotation t → it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$\langle q_F | e^{-rac{i}{\hbar}\hat{H}T} | q_I
angle = \int Dq(t) e^{-rac{1}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered.

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered.

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered.

Example

• Define a function
$$f:(-\infty,0)\longrightarrow (-\infty,\infty)$$
 by

$$f(x) = \sum_{n=1}^{\infty} e^{nx}$$
$$= e^{x} + e^{2x} + \cdots$$

• Since $|e^x| < 1$ on $(-\infty, 0)$, f(x) converges to

$$f(x) = \frac{1}{e^{-x} - 1}$$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Example

• Define a function
$$f:(-\infty,0)\longrightarrow(-\infty,\infty)$$
 by

$$f(x) = \sum_{n=1}^{\infty} e^{nx}$$
$$= e^{x} + e^{2x} + \cdots$$

• Since $|e^x| < 1$ on $(-\infty, 0)$, f(x) converges to

$$f(x) = \frac{1}{e^{-x} - 1}$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ のの()~

Example Continued

• The Wick rotated $(x \mapsto ix)$ function

$$g(x) = \sum_{n=1}^{\infty} e^{inx}$$
$$= \sum_{n=1}^{\infty} [\cos(nx) + i\sin(nx)]$$

does not converge.

• For instance, $g(-2\pi) = \infty$, while $f(-2\pi) = \frac{1}{e^{2\pi}-1}$.

|□▶ ▲圖▶ ▲臣▶ ▲臣▶ | 臣| ののの

Example Continued

• The Wick rotated $(x \mapsto ix)$ function

$$g(x) = \sum_{n=1}^{\infty} e^{inx}$$
$$= \sum_{n=1}^{\infty} [\cos(nx) + i\sin(nx)]$$

does not converge.

• For instance, $g(-2\pi) = \infty$, while $f(-2\pi) = \frac{1}{e^{2\pi}-1}$.

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$\psi(\mathbf{r},t) = A \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

with energy E and momentum vector \mathbf{p} satisfying the equations

 $E = \hbar \omega, \ \mathbf{p} = \hbar \mathbf{k}$

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$\psi(\mathbf{r},t) = A \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

with energy E and momentum vector **p** satisfying the equations

 $E = \hbar \omega, \mathbf{p} = \hbar \mathbf{k}$

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$\psi(\mathbf{r},t) = A\exp[i(\mathbf{k}\cdot\mathbf{r}-\omega t)]$$

with energy E and momentum vector \mathbf{p} satisfying the equations

 $E = \hbar \omega, \ \mathbf{p} = \hbar \mathbf{k}$

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$\psi(\mathbf{r},t) = A\exp[i(\mathbf{k}\cdot\mathbf{r}-\omega t)]$$

with energy E and momentum vector \mathbf{p} satisfying the equations

$$E = \hbar \omega, \ \mathbf{p} = \hbar \mathbf{k}$$

Electric-Magnetic Duality

• Maxwell's equations in vacuum are:

$$abla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

 $abla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = 0$

• The transformation

$$\mathsf{B}\mapsto\mathsf{E},\ \mathsf{E}\mapsto-\mathsf{B}$$

takes the first pair of equations to the second and vice versa. This symmetry is called *Electric-Magnetic Duality*.

• The duality hints that the electric and magnetic fields are part of a unified whole, the *electromagnetic field*.

Electric-Magnetic Duality

• Maxwell's equations in vacuum are:

$$abla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

 $abla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = 0$

The transformation

$$\mathbf{B}\mapsto\mathbf{E},\ \mathbf{E}\mapsto-\mathbf{B}$$

takes the first pair of equations to the second and vice versa. This symmetry is called *Electric-Magnetic Duality*.

• The duality hints that the electric and magnetic fields are part of a unified whole, the *electromagnetic field*.

Electric-Magnetic Duality

• Maxwell's equations in vacuum are:

$$abla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

 $abla \cdot \mathbf{E} = 0, \ \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = 0$

The transformation

$$\mathbf{B}\mapsto\mathbf{E},\ \mathbf{E}\mapsto-\mathbf{B}$$

takes the first pair of equations to the second and vice versa. This symmetry is called *Electric-Magnetic Duality*.

• The duality hints that the electric and magnetic fields are part of a unified whole, the *electromagnetic field*.

Electromagnetic Field as a Complex-Valued Vector Field

• Let us introduce a complex-valued vector field

$\mathscr{E}=\mathbf{E}+i\mathbf{B}$

• The duality amounts to the transformation

 $\mathscr{E}\mapsto -i\mathscr{E}$

• The vacuum Maxwell's equations boil down to two equations for \mathscr{E} :

$$\nabla \cdot \mathscr{E} = 0, \ \nabla \times \mathscr{E} = i \frac{\partial \mathscr{E}}{\partial t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Electromagnetic Field as a Complex-Valued Vector Field

• Let us introduce a complex-valued vector field

$$\mathscr{E} = \mathbf{E} + i\mathbf{B}$$

• The duality amounts to the transformation

$$\mathscr{E} \mapsto -i\mathscr{E}$$

• The vacuum Maxwell's equations boil down to two equations for \mathscr{E} :

$$\nabla \cdot \mathscr{E} = 0, \ \nabla \times \mathscr{E} = i \frac{\partial \mathscr{E}}{\partial t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Electromagnetic Field as a Complex-Valued Vector Field

• Let us introduce a complex-valued vector field

$$\mathscr{E} = \mathbf{E} + i\mathbf{B}$$

• The duality amounts to the transformation

$$\mathscr{E} \mapsto -i\mathscr{E}$$

 The vacuum Maxwell's equations boil down to two equations for *C*:

$$\nabla \cdot \mathscr{E} = 0, \ \nabla \times \mathscr{E} = i \frac{\partial \mathscr{E}}{\partial t}$$

Plane Wave as Electromagnetic Field

Let **k** be a vector in \mathbb{R}^3 and let $\boldsymbol{\omega} = |\mathbf{k}|$. Fix $\mathbf{E} \in \mathbb{C}^3$ with $\mathbf{E} \cdot \mathbf{k} = 0$ and $\mathbf{E} \times \mathbf{k} = i\boldsymbol{\omega}\mathbf{E}$. Then the plane wave

$$\mathscr{E}(\mathbf{r},t) = \mathbf{E} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$

satisfies the vacuum Maxwell's equations.

The Light Cone and Two-Sphere

$$\mathbb{N}^3 = \left\{ (t, x, y, z) \in \mathbb{R}^{3+1} : t^2 - x^2 - y^2 - z^2 = 0 \right\}$$

- Let \mathbb{N}^3_+ and \mathbb{N}^3_- denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^+ acts on \mathbb{N}^3_+ and \mathbb{N}^3_- respectively by scalar multiplication.
- Define $f_{\pm}: \mathbb{N}^3_{\pm} \longrightarrow S^2$ by $f_{\pm}(t, x, y, z) = \left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then f_{\pm} are continuous surjections i.e. identification maps.
- The orbit spaces N³₊/ℝ⁺ and N³₋/ℝ⁺ are identified with the two-sphere S². The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

$$\mathbb{N}^{3} = \left\{ (t, x, y, z) \in \mathbb{R}^{3+1} : t^{2} - x^{2} - y^{2} - z^{2} = 0 \right\}$$

- Let \mathbb{N}^3_+ and \mathbb{N}^3_- denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^+ acts on \mathbb{N}^3_+ and \mathbb{N}^3_- respectively by scalar multiplication.
- Define $f_{\pm}: \mathbb{N}^3_{\pm} \longrightarrow S^2$ by $f_{\pm}(t, x, y, z) = \left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then f_{\pm} are continuous surjections i.e. identification maps.
- The orbit spaces N³₊/ℝ⁺ and N³₋/ℝ⁺ are identified with the two-sphere S². The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

$$\mathbb{N}^{3} = \left\{ (t, x, y, z) \in \mathbb{R}^{3+1} : t^{2} - x^{2} - y^{2} - z^{2} = 0 \right\}$$

- Let \mathbb{N}^3_+ and \mathbb{N}^3_- denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^+ acts on \mathbb{N}^3_+ and \mathbb{N}^3_- respectively by scalar multiplication.
- Define $f_{\pm}: \mathbb{N}^3_{\pm} \longrightarrow S^2$ by $f_{\pm}(t, x, y, z) = \left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then f_{\pm} are continuous surjections i.e. identification maps.
- The orbit spaces N³₊/ℝ⁺ and N³₋/ℝ⁺ are identified with the two-sphere S². The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

$$\mathbb{N}^3 = \left\{ (t, x, y, z) \in \mathbb{R}^{3+1} : t^2 - x^2 - y^2 - z^2 = 0 \right\}$$

- Let \mathbb{N}^3_+ and \mathbb{N}^3_- denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^+ acts on \mathbb{N}^3_+ and \mathbb{N}^3_- respectively by scalar multiplication.
- Define $f_{\pm}: \mathbb{N}^3_{\pm} \longrightarrow S^2$ by $f_{\pm}(t, x, y, z) = \left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then f_{\pm} are continuous surjections i.e. identification maps.
- The orbit spaces N³₊/ℝ⁺ and N³₋/ℝ⁺ are identified with the two-sphere S². The identification is a homeomorphism. It is indeed a diffeomorphism.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.
- The past null directions constitute the field of vision of the observer which is the two-sphere S².
- The two-sphere S² is the extended complex plane ℂ∪{∞} called the *Riemann sphere*.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.
- The past null directions constitute the field of vision of the observer which is the two-sphere S².
- The two-sphere S² is the extended complex plane C ∪ {∞} called the *Riemann sphere*.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.
- The past null directions constitute the field of vision of the observer which is the two-sphere S².
- The two-sphere S² is the extended complex plane ℂ∪{∞} called the *Riemann sphere*.

In the beginning, God might have said

"Let there be complex numbers!"

Wave Functions are real?

- In current quantum physics, a wave function itself is not considered as a physical reality but rather a manifestation of something that is both particle and wave.
- What if we assume that wave functions are real, say they represent actual waves in spacetime?

Wave Functions are real?

- In current quantum physics, a wave function itself is not considered as a physical reality but rather a manifestation of something that is both particle and wave.
- What if we assume that wave functions are real, say they represent actual waves in spacetime?

Split-Complex Number System

• Let \mathbb{C}' be a real commutative algebra spanned by 1 and *j*, with multiplication law:

$$1 \cdot j = j \cdot 1 = j, \ j^2 = 1$$

An element of $\mathbb{C}' = 1\mathbb{R} \oplus j\mathbb{R}$ is called a *split-complex number*, a *paracomplex number*, or a *hyperbolic number*.

• $\zeta \in \mathbb{C}'$ is uniquely expressed as $\zeta = x + jy$. The conjugate $\overline{\zeta}$ is defined by $\overline{\zeta} = x - jy$ and the squared modulus $|\zeta|^2$ is defined to be

$$|\zeta|^2 = \bar{\zeta}\zeta = x^2 - y^2$$

• \mathbb{C}' is identified with \mathbb{R}^{1+1} .

Split-Complex Number System

• Let \mathbb{C}' be a real commutative algebra spanned by 1 and *j*, with multiplication law:

$$1 \cdot j = j \cdot 1 = j, \ j^2 = 1$$

An element of $\mathbb{C}' = 1\mathbb{R} \oplus j\mathbb{R}$ is called a *split-complex number*, a *paracomplex number*, or a *hyperbolic number*.

• $\zeta \in \mathbb{C}'$ is uniquely expressed as $\zeta = x + jy$. The conjugate $\overline{\zeta}$ is defined by $\overline{\zeta} = x - jy$ and the squared modulus $|\zeta|^2$ is defined to be

$$|\zeta|^2 = \bar{\zeta}\zeta = x^2 - y^2$$

• \mathbb{C}' is identified with \mathbb{R}^{1+1} .

Split-Complex Number System

• Let \mathbb{C}' be a real commutative algebra spanned by 1 and *j*, with multiplication law:

$$1 \cdot j = j \cdot 1 = j, \ j^2 = 1$$

An element of $\mathbb{C}' = 1\mathbb{R} \oplus j\mathbb{R}$ is called a *split-complex number*, a *paracomplex number*, or a *hyperbolic number*.

• $\zeta \in \mathbb{C}'$ is uniquely expressed as $\zeta = x + jy$. The conjugate $\overline{\zeta}$ is defined by $\overline{\zeta} = x - jy$ and the squared modulus $|\zeta|^2$ is defined to be

$$|\zeta|^2 = \bar{\zeta}\zeta = x^2 - y^2$$

• \mathbb{C}' is identified with \mathbb{R}^{1+1} .

Algebraic Representation of \mathbb{R}^{3+1}

• The spacetime \mathbb{R}^{3+1} can be identified with a set of 2×2 Hermitian matrices:

$$X = (t, x, y, z) \longleftrightarrow \underline{X} = \begin{pmatrix} t + jz & x + iy \\ x - iy & t - jz \end{pmatrix} = te_0 + xe_1 + ye_2 + jze_3$$

where

$$\mathbf{e}_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \mathbf{e}_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ \mathbf{e}_2 = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array}\right), \ \mathbf{e}_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

are Pauli spin matrices.

• The identification is an isometry:

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{tr}(\underline{XY}^{\dagger})$$

In particular, $|X|^2 = \det \underline{X}$.

Algebraic Representation of \mathbb{R}^{3+1}

• The spacetime \mathbb{R}^{3+1} can be identified with a set of 2×2 Hermitian matrices:

$$X = (t, x, y, z) \longleftrightarrow \underline{X} = \begin{pmatrix} t + jz & x + iy \\ x - iy & t - jz \end{pmatrix} = te_0 + xe_1 + ye_2 + jze_3$$

where

$$\mathbf{e}_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \mathbf{e}_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ \mathbf{e}_2 = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array}\right), \ \mathbf{e}_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

are Pauli spin matrices.

• The identification is an isometry:

$$\langle X,Y\rangle = \frac{1}{2} \operatorname{tr}(\underline{XY}^{\dagger})$$

In particular, $|X|^2 = \det \underline{X}$.

Algebraic Representation of \mathbb{R}^{3+1}

• Any four-vector $te_0 + xe_1 + ye_2 + jze_3 \in \mathbb{R}^{3+1}$ can be written as

$$te_0 + xe_1 + ye_2 + jze_3 = (te_0 + jze_3) + (xe_0 + iye_3)e_1$$
$$\longleftrightarrow (t + jz) + (x + iy) \in \mathbb{C}' \oplus \mathbb{C}$$

•
$$\mathbb{R}^{3+1} \cong \mathbb{C}' \oplus \mathbb{C}$$

Algebraic Representation of \mathbb{R}^{3+1}

• Any four-vector $te_0 + xe_1 + ye_2 + jze_3 \in \mathbb{R}^{3+1}$ can be written as

$$te_0 + xe_1 + ye_2 + jze_3 = (te_0 + jze_3) + (xe_0 + iye_3)e_1$$
$$\longleftrightarrow (t + jz) + (x + iy) \in \mathbb{C}' \oplus \mathbb{C}$$

< ∃ >

• $\mathbb{R}^{3+1} \cong \mathbb{C}' \oplus \mathbb{C}$

Euler's Formula

 $\bullet\,$ In $\mathbb{C}',$ there is an analogue of the Euler's formula:

$$\exp(j heta) = \cosh heta + j \sinh heta$$

where $-\infty < \theta < \infty$. The number θ is called a *hyperbolic* angle.

- $\exp(j\theta)$ is a point on the hyperbola $x^2 y^2 = 1$.
- In matrix form, exp(jθ) can be written as

$$\left(\begin{array}{c}\cosh\theta&\sinh\theta\\\sinh\theta&\cosh\theta\end{array}\right)\in\mathrm{SO}^+(1,1)$$

Euler's Formula

 $\bullet\,$ In $\mathbb{C}',$ there is an analogue of the Euler's formula:

$$\exp(j\theta) = \cosh\theta + j\sinh\theta$$

where $-\infty < \theta < \infty$. The number θ is called a *hyperbolic* angle.

• $\exp(j\theta)$ is a point on the hyperbola $x^2 - y^2 = 1$.

• In matrix form, $\exp(j\theta)$ can be written as

$$\left(egin{array}{c} \cosh heta & \sinh heta \\ \sinh heta & \cosh heta \end{array}
ight) \in \mathrm{SO}^+(1,1)$$

Euler's Formula

• In $\mathbb{C}',$ there is an analogue of the Euler's formula:

$$\exp(j\theta) = \cosh\theta + j\sinh\theta$$

where $-\infty < \theta < \infty$. The number θ is called a *hyperbolic* angle.

- $\exp(j\theta)$ is a point on the hyperbola $x^2 y^2 = 1$.
- In matrix form, $\exp(j\theta)$ can be written as

$$\left(egin{array}{cc} \cosh heta & \sinh heta \ \sinh heta & \cosh heta \end{array}
ight) \in \mathrm{SO}^+(1,1)$$

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi({\bf r},t)$ satisfies the wave equation

$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2} + \nabla^2\psi = 0$$

• The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$\hat{E} = -j\hbar \frac{\partial}{\partial t}, \ \hat{p} = j\hbar \nabla$$

$$-j\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar^2}{2m}\nabla^2\psi$$

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r},t)$ satisfies the wave equation

$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\nabla^2\psi=0$$

• The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$\hat{E} = -j\hbar \frac{\partial}{\partial t}, \ \hat{p} = j\hbar \nabla$$

$$-j\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar^2}{2m}\nabla^2\psi$$

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\nabla^2\psi=0$$

• The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$\hat{E} = -j\hbar \frac{\partial}{\partial t}, \ \hat{p} = j\hbar \nabla$$

$$-j\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar^2}{2m}\nabla^2\psi$$

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

$$-\frac{1}{c^2}\frac{\partial^2\psi}{\partial t^2}+\nabla^2\psi=0$$

• The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$\hat{E} = -j\hbar \frac{\partial}{\partial t}, \ \hat{p} = j\hbar \nabla$$

$$-j\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar^2}{2m}\nabla^2\psi$$

Negative Probability?

• Let
$$\psi^+(\mathbf{r},t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)]$$
 and
 $\psi^-(\mathbf{r},t) = Aj \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)].$

• $\psi^{-}(\mathbf{r}.t)$ also satisfies the Schrödinger equation.

• While
$$|\psi^+(\mathbf{r},t)|^2 = A^2 > 0$$
, $|\psi^-(\mathbf{r},t)|^2 = -A^2 < 0$.

- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^+(\mathbf{r},t)$ is a plane wave for a particle with charge density $\rho_e^+ = e\overline{\psi^+}\psi^+$, then $\psi^-(\mathbf{r},t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_e^- = e\overline{\psi^-}\psi^-$.

- Let $\psi^+(\mathbf{r},t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} \omega t)]$ and $\psi^-(\mathbf{r},t) = Aj \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)].$
- $\psi^{-}(\mathbf{r}.t)$ also satisfies the Schrödinger equation.
- While $|\psi^+(\mathbf{r},t)|^2 = A^2 > 0$, $|\psi^-(\mathbf{r},t)|^2 = -A^2 < 0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^+(\mathbf{r},t)$ is a plane wave for a particle with charge density $\rho_e^+ = e\overline{\psi^+}\psi^+$, then $\psi^-(\mathbf{r},t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_e^- = e\overline{\psi^-}\psi^-$.

- Let $\psi^+(\mathbf{r},t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} \omega t)]$ and $\psi^-(\mathbf{r},t) = Aj \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)].$
- $\psi^{-}(\mathbf{r}.t)$ also satisfies the Schrödinger equation.
- While $|\psi^+(\mathbf{r},t)|^2 = A^2 > 0$, $|\psi^-(\mathbf{r},t)|^2 = -A^2 < 0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^+(\mathbf{r},t)$ is a plane wave for a particle with charge density $\rho_e^+ = e\overline{\psi^+}\psi^+$, then $\psi^-(\mathbf{r},t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_e^- = e\overline{\psi^-}\psi^-$.

- Let $\psi^+(\mathbf{r},t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} \omega t)]$ and $\psi^-(\mathbf{r},t) = Aj \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)].$
- $\psi^{-}(\mathbf{r}.t)$ also satisfies the Schrödinger equation.

• While
$$|\psi^+(\mathbf{r},t)|^2 = A^2 > 0$$
, $|\psi^-(\mathbf{r},t)|^2 = -A^2 < 0$.

- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^+(\mathbf{r},t)$ is a plane wave for a particle with charge density $\rho_e^+ = e\overline{\psi^+}\psi^+$, then $\psi^-(\mathbf{r},t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_e^- = e\overline{\psi^-}\psi^-$.

- Let $\psi^+(\mathbf{r},t) = A \exp[j(\mathbf{k} \cdot \mathbf{r} \omega t)]$ and $\psi^-(\mathbf{r},t) = Aj \exp[j(\mathbf{k} \cdot \mathbf{r} - \omega t)].$
- $\psi^{-}(\mathbf{r}.t)$ also satisfies the Schrödinger equation.

• While
$$|\psi^+(\mathbf{r},t)|^2 = A^2 > 0$$
, $|\psi^-(\mathbf{r},t)|^2 = -A^2 < 0$.

- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^+(\mathbf{r},t)$ is a plane wave for a particle with charge density $\rho_e^+ = e\overline{\psi^+}\psi^+$, then $\psi^-(\mathbf{r},t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_e^- = e\overline{\psi^-}\psi^-$.

$\psi^+(\mathbf{r},t)$ and $\psi^-(\mathbf{r},t)$

Figure : ψ^+ (in blue) and ψ^- (in green)

æ

《曰》 《聞》 《臣》 《臣》

Split-Complex Structure and the Charge Conjugation Map

• Define a linear endomorphism $\mathscr{J}:\mathbb{C}'\longrightarrow\mathbb{C}'$ by

$$\mathcal{J}1=j, \mathcal{J}j=1$$

• \mathscr{J} satisfies

$$\mathcal{J}^2 = \mathcal{I}, \ \langle \mathcal{J} \zeta_1, \mathcal{J} \zeta_2 \rangle = - \langle \zeta_1, \zeta_2 \rangle$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the *associated split-complex structure* of \mathbb{C}' .

𝔅 may be used to define the charge conjugation map on the split-complex Hilbert space *ℋ* over real field ℝ of state vectors.

Split-Complex Structure and the Charge Conjugation Map

 \bullet Define a linear endomorphism $\mathscr{J}:\mathbb{C}'\longrightarrow\mathbb{C}'$ by

$$\mathcal{J}1=j, \mathcal{J}j=1$$

 $\bullet \hspace{0.1 in} \mathscr{J} \hspace{0.1 in} \text{satisfies}$

$$\mathscr{J}^2 = \mathscr{I}, \ \langle \mathscr{J} \zeta_1, \mathscr{J} \zeta_2 \rangle = - \langle \zeta_1, \zeta_2 \rangle$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the *associated split-complex structure* of \mathbb{C}' .

𝔅 may be used to define the charge conjugation map on the
 split-complex Hilbert space *ℋ* over real field ℝ of state
 vectors.

Split-Complex Structure and the Charge Conjugation Map

 \bullet Define a linear endomorphism $\mathscr{J}:\mathbb{C}'\longrightarrow\mathbb{C}'$ by

$$\mathcal{J}1=j, \mathcal{J}j=1$$

 $\bullet \hspace{0.1 in} \mathscr{J} \hspace{0.1 in} \text{satisfies}$

$$\mathscr{J}^2 = \mathscr{I}, \ \langle \mathscr{J} \zeta_1, \mathscr{J} \zeta_2 \rangle = - \langle \zeta_1, \zeta_2 \rangle$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the *associated split-complex structure* of \mathbb{C}' .

I may be used to define the charge conjugation map on the
 split-complex Hilbert space *ℋ over real field* ℝ of state
 vectors.

Two Hilbert Spaces \mathscr{H}^+ and \mathscr{H}^-

- {ψ_n⁺(**r**, t) : ψ_n⁺(**r**, t) = A_n exp[j(**k**_n · **r** − ω_nt)], n = 1, 2, · · · } forms a countable basis for a spilt-complex Hilbert space ℋ⁺ over real field ℝ.
- {ψ_n⁻(**r**, t) : ψ_n⁻(**r**, t) = A_nj exp[j(k_n · **r** − ω_nt)], n = 1, 2, · · ·} forms a countable basis for a split-complex Hilbert space ℋ⁻ over real field ℝ.
- The map

 $\mathscr{J}: \mathscr{H}^+ \longrightarrow \mathscr{H}^-; \ \psi_n^+(\mathbf{r},t) \longmapsto j\psi_n^+(\mathbf{r},t) = \psi_n^-(\mathbf{r},t)$ is an anti-isometry is called the *Charge Conjugation Map*.

Two Hilbert Spaces \mathscr{H}^+ and \mathscr{H}^-

- {ψ_n⁺(**r**, t) : ψ_n⁺(**r**, t) = A_n exp[j(**k**_n · **r** − ω_nt)], n = 1, 2, · · · } forms a countable basis for a spilt-complex Hilbert space ℋ⁺ over real field ℝ.
- {ψ_n⁻(**r**, t) : ψ_n⁻(**r**, t) = A_nj exp[j(k_n · **r** − ω_nt)], n = 1, 2, · · ·} forms a countable basis for a split-complex Hilbert space ℋ⁻ over real field ℝ.
- The map

 $\mathscr{J}: \mathscr{H}^+ \longrightarrow \mathscr{H}^-; \ \psi_n^+(\mathbf{r},t) \longmapsto j\psi_n^+(\mathbf{r},t) = \psi_n^-(\mathbf{r},t)$ is an anti-isometry is called the *Charge Conjugation Map*.

Two Hilbert Spaces \mathscr{H}^+ and \mathscr{H}^-

- {ψ_n⁺(**r**, t) : ψ_n⁺(**r**, t) = A_n exp[j(**k**_n · **r** − ω_nt)], n = 1, 2, · · · } forms a countable basis for a spilt-complex Hilbert space ℋ⁺ over real field ℝ.
- {ψ_n⁻(**r**, t) : ψ_n⁻(**r**, t) = A_nj exp[j(k_n · **r** − ω_nt)], n = 1, 2, · · ·} forms a countable basis for a split-complex Hilbert space ℋ⁻ over real field ℝ.
- The map

 $\mathscr{J}: \mathscr{H}^+ \longrightarrow \mathscr{H}^-; \ \psi_n^+(\mathbf{r}, t) \longmapsto j\psi_n^+(\mathbf{r}, t) = \psi_n^-(\mathbf{r}, t)$ is an anti-isometry is called the *Charge Conjugation Map*.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter.
- This may explain why antiparticles are so rare in the universe.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter.
- This may explain why antiparticles are so rare in the universe.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter.
- This may explain why antiparticles are so rare in the universe.

Path Integral Redux

 The amplitude of a particle to propagate from a point q_I to a point q_F in time T is obtained as

$$\langle q_{\mathsf{F}}|e^{-rac{j}{\hbar}\hat{H}\mathcal{T}}|q_{\mathsf{I}}
angle = \int Dq(t)e^{rac{j}{\hbar}\int_{0}^{\mathcal{T}}dtL(\dot{q},q)}$$

• The Feynman meassure Dq(t) is given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{2\pi m \hbar j}{\delta t} \right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k \right)$$

where $\delta t = \frac{T}{N}$.

• The integrand is no longer oscillatory, so it may be convergent in spacetime.

Path Integral Redux

• The amplitude of a particle to propagate from a point q_I to a point q_F in time T is obtained as

$$\langle q_F | e^{-rac{j}{\hbar}\hat{H}T} | q_I
angle = \int Dq(t) e^{rac{j}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• The Feynman meassure Dq(t) is given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{2\pi m \hbar j}{\delta t} \right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k \right)$$

where $\delta t = \frac{T}{N}$.

• The integrand is no longer oscillatory, so it may be convergent in spacetime.

Path Integral Redux

• The amplitude of a particle to propagate from a point q_I to a point q_F in time T is obtained as

$$\langle q_F | e^{-rac{j}{\hbar}\hat{H}T} | q_I
angle = \int Dq(t) e^{rac{j}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• The Feynman meassure Dq(t) is given by

$$\int Dq(t) := \lim_{N \to \infty} \left(\frac{2\pi m\hbar j}{\delta t}\right)^{\frac{N}{2}} \left(\prod_{k=1}^{N-1} \int dq_k\right)$$

where $\delta t = \frac{T}{N}$.

• The integrand is no longer oscillatory, so it may be convergent in spacetime.

Path Integral Redux Continued

• Under the transformation $\mathbb{R}^{3+1} \longrightarrow \mathbb{R}^{3+1}$; $(t, x, y, z) \mapsto (-jt, x, y, z)$, the path integral turns into

$$\langle q_F | e^{-\frac{j}{\hbar}\hat{H}T} | q_I \rangle = \int Dq(t) e^{-\frac{1}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• This path integral takes the same form as the Euclidean path integral except it is still defined in Minkowski spacetime.

Path Integral Redux Continued

• Under the transformation $\mathbb{R}^{3+1} \longrightarrow \mathbb{R}^{3+1}$; $(t, x, y, z) \mapsto (-jt, x, y, z)$, the path integral turns into

$$\langle q_F | e^{-\frac{j}{\hbar}\hat{H}T} | q_I \rangle = \int Dq(t) e^{-\frac{1}{\hbar}\int_0^T dt L(\dot{q},q)}$$

• This path integral takes the same form as the Euclidean path integral except it is still defined in Minkowski spacetime.

Questions?

Any Questions?

