Doing Quantum Physics with Split-Complex Numbers

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

Mathematics-Physics Joint Colloquium, February 21, 2014

Outline

(1) Motivation
(2) Complex Numbers are for Light
(3) Quantum Physics with Split-Complex Numbers

Path Integral

- In quantum mechanics, the amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is given by

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{i}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- $L(\dot{q}, q)$ is the Lagrangian

$$
L(\dot{q}, q)=\frac{m}{2} \dot{q}^{2}-V(q)
$$

- $D q(t)$ is the Feynman measure given by

Path Integral

- In quantum mechanics, the amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is given by

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{i}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- $L(\dot{q}, q)$ is the Lagrangian

$$
L(\dot{q}, q)=\frac{m}{2} \dot{q}^{2}-V(q)
$$

- $D q(t)$ is the Feynman measure given by

Path Integral

- In quantum mechanics, the amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is given by

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{i}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- $L(\dot{q}, q)$ is the Lagrangian

$$
L(\dot{q}, q)=\frac{m}{2} \dot{q}^{2}-V(q)
$$

- $D q(t)$ is the Feynman measure given by

$$
\int D q(t):=\lim _{N \rightarrow \infty}\left(\frac{-i m \hbar}{2 \pi \delta t}\right)^{\frac{N}{2}}\left(\prod_{k=1}^{N-1} \int d q_{k}\right)
$$

where $\delta t=\frac{T}{N}$.

Path Integral

Continued

- The path integral is taken over all possible paths from q_{I} to q_{F} in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand
- i is the problem!

Path Integral

Continued

- The path integral is taken over all possible paths from q_{I} to q_{F} in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand.
- i is the problem!

Path Integral

Continued

- The path integral is taken over all possible paths from q_{I} to q_{F} in spacetime.
- This path integral does not converge due to the oscillatory factor appeared as the integrand.
- i is the problem!

Euclideanisation

- Wick rotation $t \longmapsto$ it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} H T}\left|q_{l}\right\rangle=\int D q(t) e^{-\frac{1}{\hbar}} \int_{0}^{T} d t L(\dot{q}, q)
$$

- The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Euclideanisation

- Wick rotation $t \longmapsto$ it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{-\frac{1}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Euclideanisation

- Wick rotation $t \longmapsto$ it turns Minkowski spacetime into Euclidean spacetime.
- Accordnigly, the path integral turns into Euclidean path integral

$$
\left\langle q_{F}\right| e^{-\frac{i}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{-\frac{1}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- The integrand becomes a decaying exponential whose maximum value occurs at the minimum of the Euclidean action.

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered.

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered

Problems with Euclideanisation

- It is troublesome that path integral cannot be calculated in actual spacetime and that it must be calculated in Euclidean spacetime which is not physical spacetime.
- Most Euclidean solutions are approximations and there is no guarantee that these solutions will be stable when they are brought to Minkowski spacetime.
- Analytic continuation via Wick rotation works when the spacetime is flat. So Euclideanisation will have a problem when the spacetime is curved i.e. gravitation is considered.

Example

- Define a function $f:(-\infty, 0) \longrightarrow(-\infty, \infty)$ by

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} e^{n x} \\
& =e^{x}+e^{2 x}+\cdots
\end{aligned}
$$

- Since $\left|e^{x}\right|<1$ on $(-\infty, 0), f(x)$ converges to

Example

- Define a function $f:(-\infty, 0) \longrightarrow(-\infty, \infty)$ by

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} e^{n x} \\
& =e^{x}+e^{2 x}+\cdots
\end{aligned}
$$

- Since $\left|e^{x}\right|<1$ on $(-\infty, 0), f(x)$ converges to

$$
f(x)=\frac{1}{e^{-x}-1}
$$

Example

Continued

- The Wick rotated $(x \longmapsto i x)$ function

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} e^{i n x} \\
& =\sum_{n=1}^{\infty}[\cos (n x)+i \sin (n x)]
\end{aligned}
$$

does not converge.

- For instance, $g(-2 \pi)=\infty$, while $f(-2 \pi)=\frac{1}{e^{2 \pi}-1}$

Example

Continued

- The Wick rotated $(x \longmapsto i x)$ function

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} e^{i n x} \\
& =\sum_{n=1}^{\infty}[\cos (n x)+i \sin (n x)]
\end{aligned}
$$

does not converge.

- For instance, $g(-2 \pi)=\infty$, while $f(-2 \pi)=\frac{1}{e^{2 \pi}-1}$.

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$
\psi(\mathbf{r}, t)=A \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

with energy E and momentum vector p satisfying the equations

$$
E=\hbar \omega, \mathbf{p}=\hbar \mathbf{k}
$$

- Following de Broglie, to every free particle, a complex plane wave shown above is assigned.

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave $\psi(\mathbf{r}, t)=A \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]$
with energy E and momentum vector p satisfying the equations

$$
E=\hbar \omega, \mathbf{p}=\hbar \mathbf{k}
$$

- Following de Broglie, to every free particle, a complex plane wave shown above is assigned.

Why Complex Numbers in Quantum Mechanics？

－Light must be described by electromagnetic waves or by particles（Wave－Particle Duality）
－de Broglie hypothesised that what is true for photons should be valid for any particle．
－A photon can be described by the complex plane wave

$$
\psi(\mathbf{r}, t)=A \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

with energy E and momentum vector \mathbf{p} satisfying the equations

$$
E=\hbar \omega, \mathbf{p}=\hbar \mathbf{k}
$$

－Following de Broglie，to every free particle，a complex plane wave shown above is assigned．

Why Complex Numbers in Quantum Mechanics?

- Light must be described by electromagnetic waves or by particles (Wave-Particle Duality)
- de Broglie hypothesised that what is true for photons should be valid for any particle.
- A photon can be described by the complex plane wave

$$
\psi(\mathbf{r}, t)=A \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

with energy E and momentum vector \mathbf{p} satisfying the equations

$$
E=\hbar \omega, \mathbf{p}=\hbar \mathbf{k}
$$

- Following de Broglie, to every free particle, a complex plane wave shown above is assigned.

Electric-Magnetic Duality

- Maxwell's equations in vacuum are:

$$
\begin{aligned}
& \nabla \cdot \mathbf{B}=0, \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
& \nabla \cdot \mathbf{E}=0, \nabla \times \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=0
\end{aligned}
$$

- The transformation

takes the first pair of equations to the second and vice versa. This symmetry is called Electric-Magnetic Duality.
- The duality hints that the electric and magnetic fields are part of a unified whole, the electromagnetic field.

Electric-Magnetic Duality

- Maxwell's equations in vacuum are:

$$
\begin{aligned}
& \nabla \cdot \mathbf{B}=0, \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
& \nabla \cdot \mathbf{E}=0, \nabla \times \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=0
\end{aligned}
$$

- The transformation

$$
\mathrm{B} \mapsto \mathrm{E}, \mathrm{E} \mapsto-\mathrm{B}
$$

takes the first pair of equations to the second and vice versa.
This symmetry is called Electric-Magnetic Duality.

- The duality hints that the electric and magnetic fields are part of a unified whole, the electromagnetic field.

Electric-Magnetic Duality

- Maxwell's equations in vacuum are:

$$
\begin{aligned}
& \nabla \cdot \mathbf{B}=0, \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \\
& \nabla \cdot \mathbf{E}=0, \nabla \times \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=0
\end{aligned}
$$

- The transformation

$$
\mathrm{B} \mapsto \mathrm{E}, \mathrm{E} \mapsto-\mathrm{B}
$$

takes the first pair of equations to the second and vice versa.
This symmetry is called Electric-Magnetic Duality.

- The duality hints that the electric and magnetic fields are part of a unified whole, the electromagnetic field.

Electromagnetic Field as a Complex-Valued Vector Field

- Let us introduce a complex-valued vector field

$$
\mathscr{E}=\mathbf{E}+i \mathbf{B}
$$

- The duality amounts to the transformation
- The vacuum Maxwell's equations boil down to two equations

Electromagnetic Field as a Complex-Valued Vector Field

- Let us introduce a complex-valued vector field

$$
\mathscr{E}=\mathbf{E}+i \mathbf{B}
$$

- The duality amounts to the transformation

$$
\mathscr{E} \mapsto-i \mathscr{E}
$$

- The vacuum Maxwell's equations boil down to two equations

Electromagnetic Field as a Complex-Valued Vector Field

- Let us introduce a complex-valued vector field

$$
\mathscr{E}=\mathbf{E}+i \mathbf{B}
$$

- The duality amounts to the transformation

$$
\mathscr{E} \mapsto-i \mathscr{E}
$$

- The vacuum Maxwell's equations boil down to two equations for \mathscr{E} :

$$
\nabla \cdot \mathscr{E}=0, \quad \nabla \times \mathscr{E}=i \frac{\partial \mathscr{E}}{\partial t}
$$

Plane Wave as Electromagnetic Field

Let \mathbf{k} be a vector in \mathbb{R}^{3} and let $\omega=|\mathbf{k}|$. Fix $\mathbf{E} \in \mathbb{C}^{3}$ with $\mathbf{E} \cdot \mathbf{k}=0$ and $\mathbf{E} \times \mathbf{k}=i \omega \mathbf{E}$. Then the plane wave

$$
\mathscr{E}(\mathbf{r}, t)=\mathbf{E} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

satisfies the vacuum Maxwell's equations.

The Light Cone and Two-Sphere

- The Light Cone in Minkowski spacetime \mathbb{R}^{3+1} is the hyperquadric

$$
\mathbb{N}^{3}=\left\{(t, x, y, z) \in \mathbb{R}^{3+1}: t^{2}-x^{2}-y^{2}-z^{2}=0\right\}
$$

- Let \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^{+}acts on \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} respectively by scalar multiplication.
- Define $f_{ \pm}: \mathbb{N}_{ \pm}^{3} \longrightarrow S^{2}$ by $f_{ \pm}(t, x, y, z)=\left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then $f_{ \pm}$are
continuous surjections i.e. identification maps.
- The orbit spaces $\mathbb{N}^{3} / \mathbb{R}^{+}$and $\mathbb{N}^{3} / \mathbb{R}^{+}$are identified with the two-sphere S^{2}. The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

- The Light Cone in Minkowski spacetime \mathbb{R}^{3+1} is the hyperquadric

$$
\mathbb{N}^{3}=\left\{(t, x, y, z) \in \mathbb{R}^{3+1}: t^{2}-x^{2}-y^{2}-z^{2}=0\right\}
$$

- Let \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^{+}acts on \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} respectively by scalar multiplication.
- Define $f_{ \pm}: \mathbb{N}_{ \pm}^{3} \longrightarrow S^{2}$ by $f_{ \pm}(t, x, y, z)=\left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then $f_{ \pm}$are continuous surjections i.e. identification maps.
- The orbit spaces $\mathbb{N}^{3} / \mathbb{R}^{+}$and N^{3} / \mathbb{R}^{+}are identified with the two-sphere S^{2}. The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

- The Light Cone in Minkowski spacetime \mathbb{R}^{3+1} is the hyperquadric

$$
\mathbb{N}^{3}=\left\{(t, x, y, z) \in \mathbb{R}^{3+1}: t^{2}-x^{2}-y^{2}-z^{2}=0\right\}
$$

- Let \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^{+}acts on \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} respectively by scalar multiplication.
- Define $f_{ \pm}: \mathbb{N}_{ \pm}^{3} \longrightarrow S^{2}$ by $f_{ \pm}(t, x, y, z)=\left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then $f_{ \pm}$are continuous surjections i.e. identification maps.
- The orbit spaces $\mathbb{N}_{+}^{3} / \mathbb{R}^{+}$and $\mathbb{N}_{-}^{3} / \mathbb{R}^{+}$are identified with the two-sphere S^{2}. The identification is a homeomorphism. It is indeed a diffeomorphism.

The Light Cone and Two-Sphere

- The Light Cone in Minkowski spacetime \mathbb{R}^{3+1} is the hyperquadric

$$
\mathbb{N}^{3}=\left\{(t, x, y, z) \in \mathbb{R}^{3+1}: t^{2}-x^{2}-y^{2}-z^{2}=0\right\}
$$

- Let \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} denote the future and the past light cones respectively. The multiplicative group \mathbb{R}^{+}acts on \mathbb{N}_{+}^{3} and \mathbb{N}_{-}^{3} respectively by scalar multiplication.
- Define $f_{ \pm}: \mathbb{N}_{ \pm}^{3} \longrightarrow S^{2}$ by $f_{ \pm}(t, x, y, z)=\left(\frac{x}{t}, \frac{y}{t}, \frac{z}{t}\right)$. Then $f_{ \pm}$are continuous surjections i.e. identification maps.
- The orbit spaces $\mathbb{N}_{+}^{3} / \mathbb{R}^{+}$and $\mathbb{N}_{-}^{3} / \mathbb{R}^{+}$are identified with the two-sphere S^{2}. The identification is a homeomorphism. It is indeed a diffeomorphism.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.

The past null directions constitute the field of vision of the
observer which is the two-sphere S^{2}.

- The two-sphere S^{2} is the extended complex plane $\mathbb{C} \cup\{\infty\}$ called the Riemann sphere.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.
- The past null directions constitute the field of vision of the observer which is the two-sphere S^{2}.
- The two-sphere S^{2} is the extended complex plane $\mathbb{C} \cup\{\infty\}$ called the Riemann sphere.

Celestial Sphere and Complex Numbers

- For an observer at the origin (the event), light rays through his eye correspond to null lines through the origin.
- The past null directions constitute the field of vision of the observer which is the two-sphere S^{2}.
- The two-sphere S^{2} is the extended complex plane $\mathbb{C} \cup\{\infty\}$ called the Riemann sphere.

In the beginning, God might have said

"Let there be complex numbers!"

Wave Functions are real?

- In current quantum physics, a wave function itself is not considered as a physical reality but rather a manifestation of something that is both particle and wave.
- What if we assume that wave functions are real, say they represent actual waves in spacetime?

Wave Functions are real?

- In current quantum physics, a wave function itself is not considered as a physical reality but rather a manifestation of something that is both particle and wave.
- What if we assume that wave functions are real, say they represent actual waves in spacetime?

Split-Complex Number System

- Let \mathbb{C}^{\prime} be a real commutative algebra spanned by 1 and j, with multiplication law:

$$
1 \cdot j=j \cdot 1=j, j^{2}=1
$$

An element of $\mathbb{C}^{\prime}=1 \mathbb{R} \oplus j \mathbb{R}$ is called a split-complex number, a paracomplex number, or a hyperbolic number.

Split-Complex Number System

- Let \mathbb{C}^{\prime} be a real commutative algebra spanned by 1 and j, with multiplication law:

$$
1 \cdot j=j \cdot 1=j, j^{2}=1
$$

An element of $\mathbb{C}^{\prime}=1 \mathbb{R} \oplus j \mathbb{R}$ is called a split-complex number, a paracomplex number, or a hyperbolic number.

- $\zeta \in \mathbb{C}^{\prime}$ is uniquely expressed as $\zeta=x+j y$. The conjugate $\bar{\zeta}$ is defined by $\bar{\zeta}=x-j y$ and the squared modulus $|\zeta|^{2}$ is defined to be

$$
|\zeta|^{2}=\bar{\zeta} \zeta=x^{2}-y^{2}
$$

- \mathbb{C}^{\prime} is identified with \mathbb{R}^{1+1}

Split-Complex Number System

- Let \mathbb{C}^{\prime} be a real commutative algebra spanned by 1 and j, with multiplication law:

$$
1 \cdot j=j \cdot 1=j, j^{2}=1
$$

An element of $\mathbb{C}^{\prime}=1 \mathbb{R} \oplus j \mathbb{R}$ is called a split-complex number, a paracomplex number, or a hyperbolic number.

- $\zeta \in \mathbb{C}^{\prime}$ is uniquely expressed as $\zeta=x+j y$. The conjugate $\bar{\zeta}$ is defined by $\bar{\zeta}=x-j y$ and the squared modulus $|\zeta|^{2}$ is defined to be

$$
|\zeta|^{2}=\bar{\zeta} \zeta=x^{2}-y^{2}
$$

- \mathbb{C}^{\prime} is identified with \mathbb{R}^{1+1}.

Algebraic Representation of \mathbb{R}^{3+1}

－The spacetime \mathbb{R}^{3+1} can be identified with a set of 2×2 Hermitian matrices：

$$
X=(t, x, y, z) \longleftrightarrow \underline{X}=\left(\begin{array}{cc}
t+j z & x+i y \\
x-i y & t-j z
\end{array}\right)=t e_{0}+x e_{1}+y e_{2}+j z e_{3}
$$

where

$$
e_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), e_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), e_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), e_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are Pauli spin matrices．
－The identification is an isometry：

Algebraic Representation of \mathbb{R}^{3+1}

- The spacetime \mathbb{R}^{3+1} can be identified with a set of 2×2 Hermitian matrices:

$$
X=(t, x, y, z) \longleftrightarrow \underline{X}=\left(\begin{array}{cc}
t+j z & x+i y \\
x-i y & t-j z
\end{array}\right)=t e_{0}+x e_{1}+y e_{2}+j z e_{3}
$$

where

$$
e_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), e_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), e_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), e_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are Pauli spin matrices.

- The identification is an isometry:

$$
\langle X, Y\rangle=\frac{1}{2} \operatorname{tr}\left(X Y^{\dagger}\right)
$$

In particular, $|X|^{2}=\operatorname{det} \underline{X}$.

Algebraic Representation of \mathbb{R}^{3+1}

Continued

- Any four-vector $t e_{0}+x e_{1}+y e_{2}+j z e_{3} \in \mathbb{R}^{3+1}$ can be written as

$$
\begin{aligned}
t e_{0}+x e_{1}+y e_{2}+j z e_{3} & =\left(t e_{0}+j z e_{3}\right)+\left(x e_{0}+i y e_{3}\right) e_{1} \\
& \longleftrightarrow(t+j z)+(x+i y) \in \mathbb{C}^{\prime} \oplus \mathbb{C}
\end{aligned}
$$

Algebraic Representation of \mathbb{R}^{3+1}

Continued

- Any four-vector $t e_{0}+x e_{1}+y e_{2}+j z e_{3} \in \mathbb{R}^{3+1}$ can be written as

$$
\begin{aligned}
t e_{0}+x e_{1}+y e_{2}+j z e_{3} & =\left(t e_{0}+j z e_{3}\right)+\left(x e_{0}+i y e_{3}\right) e_{1} \\
& \longleftrightarrow(t+j z)+(x+i y) \in \mathbb{C}^{\prime} \oplus \mathbb{C}
\end{aligned}
$$

- $\mathbb{R}^{3+1} \cong \mathbb{C}^{\prime} \oplus \mathbb{C}$

Euler's Formula

- In \mathbb{C}^{\prime}, there is an analogue of the Euler's formula:

$$
\exp (j \theta)=\cosh \theta+j \sinh \theta
$$

where $-\infty<\theta<\infty$. The number θ is called a hyperbolic angle.

- $\exp (j \theta)$ is a point on the hyperbola $x^{2}-y^{2}=1$
- In matrix form, $\exp (j \theta)$ can be written as

Euler's Formula

- In \mathbb{C}^{\prime}, there is an analogue of the Euler's formula:

$$
\exp (j \theta)=\cosh \theta+j \sinh \theta
$$

where $-\infty<\theta<\infty$. The number θ is called a hyperbolic angle.

- $\exp (j \theta)$ is a point on the hyperbola $x^{2}-y^{2}=1$.
- In matrix form, $\exp (j \theta)$ can be written as

Euler's Formula

- In \mathbb{C}^{\prime}, there is an analogue of the Euler's formula:

$$
\exp (j \theta)=\cosh \theta+j \sinh \theta
$$

where $-\infty<\theta<\infty$. The number θ is called a hyperbolic angle.

- $\exp (j \theta)$ is a point on the hyperbola $x^{2}-y^{2}=1$.
- In matrix form, $\exp (j \theta)$ can be written as

$$
\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array}\right) \in \mathrm{SO}^{+}(1,1)
$$

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

- The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

- $\psi(\mathbf{r}, t)$ satisfies the Schrödinger equation

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=0
$$

- The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

- $\psi(r, t)$ satisfies the Schrödinger equation

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=0
$$

- The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$
\hat{E}=-j \hbar \frac{\partial}{\partial t}, \hat{p}=j \hbar \nabla
$$

- $\psi(r, t)$ satisfies the Schrödinger equation

Split-Complex Plane Wave

- Let us consider a split-complex plane wave $\psi(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$, where A is a real number.
- If we assume that the wave is traveling at the speed of light in vacuum, $\psi(\mathbf{r}, t)$ satisfies the wave equation

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=0
$$

- The energy operator \hat{E} and the momentum operator \hat{p} are obtained as

$$
\hat{E}=-j \hbar \frac{\partial}{\partial t}, \hat{p}=j \hbar \nabla
$$

- $\psi(r, t)$ satisfies the Schrödinger equation

$$
-j \hbar \frac{\partial \psi}{\partial t}=\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

Negative Probability?

- Let $\psi^{+}(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$ and $\psi^{-}(\mathbf{r}, t)=A j \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$.
- $\Psi^{-}(r . t)$ also satisfies the Schrödinger equation.
- While $\left|\psi^{+}(r, t)\right|^{2}=A^{2}>0,\left|\psi^{-}(r, t)\right|^{2}=-A^{2}<0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^{+}(r, t)$ is a plane wave for a particle with charge density $\rho_{e}^{+}=e \overline{\psi^{+}} \psi^{+}$, then $\psi^{-}(\mathbf{r}, t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_{e}^{-}=e \overline{\psi^{-}} \psi^{\prime}$

Negative Probability?

- Let $\psi^{+}(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$ and $\psi^{-}(\mathbf{r}, t)=A j \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$.
- $\psi^{-}(\mathbf{r} . t)$ also satisfies the Schrödinger equation.
- While $\left|\psi^{+}(r, t)\right|^{2}=A^{2}>0,\left|\psi^{-}(r, t)\right|^{2}=-A^{2}<0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^{+}(r, t)$ is a plane wave for a particle with charge density $\rho_{e}^{+}=e \overline{\psi^{+}} \psi^{+}$, then $\psi^{-}(\mathbf{r}, t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_{e}^{-}=e \psi^{-} \psi^{-}$

Negative Probability?

- Let $\psi^{+}(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$ and $\psi^{-}(\mathbf{r}, t)=A j \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$.
- $\psi^{-}(\mathbf{r} . t)$ also satisfies the Schrödinger equation.
- While $\left|\psi^{+}(\mathbf{r}, t)\right|^{2}=A^{2}>0,\left|\psi^{-}(\mathbf{r}, t)\right|^{2}=-A^{2}<0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^{+}(r, t)$ is a plane wave for a particle with charge density $\rho_{e}^{+}=e \overline{\psi^{+}} \psi^{+}$, then $\psi^{-}(\mathbf{r}, t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_{e}^{-}=e \psi^{-} \psi^{-}$

Negative Probability?

- Let $\psi^{+}(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$ and $\psi^{-}(\mathbf{r}, t)=A j \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$.
- $\psi^{-}(\mathbf{r} . t)$ also satisfies the Schrödinger equation.
- While $\left|\psi^{+}(\mathbf{r}, t)\right|^{2}=A^{2}>0,\left|\psi^{-}(\mathbf{r}, t)\right|^{2}=-A^{2}<0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^{+}(r, t)$ is a plane wave for a particle with charge density $\rho_{e}^{+}=e \overline{\psi^{+}} \psi^{+}$, then $\psi^{-}(\mathbf{r}, t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_{e}^{-}=e \psi^{-} \psi^{-}$

Negative Probability?

- Let $\psi^{+}(\mathbf{r}, t)=A \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$ and $\psi^{-}(\mathbf{r}, t)=A j \exp [j(\mathbf{k} \cdot \mathbf{r}-\omega t)]$.
- $\psi^{-}(\mathbf{r} . t)$ also satisfies the Schrödinger equation.
- While $\left|\psi^{+}(\mathbf{r}, t)\right|^{2}=A^{2}>0,\left|\psi^{-}(\mathbf{r}, t)\right|^{2}=-A^{2}<0$.
- The negative sign may be interpreted as a difference in sign of unit charge between a particle and its antiparticle.
- If $\psi^{+}(\mathbf{r}, t)$ is a plane wave for a particle with charge density $\rho_{e}^{+}=e \overline{\psi^{+}} \psi^{+}$, then $\psi^{-}(\mathbf{r}, t)$ may be considered as a plane wave for its antiparticle with charge density $\rho_{e}^{-}=e \overline{\psi^{-}} \psi^{-}$.

$\psi^{+}(\mathbf{r}, t)$ and $\boldsymbol{\psi}^{-}(\mathbf{r}, t)$

Figure: ψ^{+}(in blue) and ψ^{-}(in green)

Split-Complex Structure and the Charge Conjugation Map

- Define a linear endomorphism $\mathscr{J}: \mathbb{C}^{\prime} \longrightarrow \mathbb{C}^{\prime}$ by

$$
\mathscr{J} 1=j, \mathscr{J} j=1
$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the associated split-complex structure of \mathbb{C}^{\prime}

- \mathscr{J} may be used to define the charge conjugation map on the split-complex Hilbert space \mathscr{H} over real field \mathbb{R} of state vectors.

Split-Complex Structure and the Charge Conjugation Map

- Define a linear endomorphism $\mathscr{J}: \mathbb{C}^{\prime} \longrightarrow \mathbb{C}^{\prime}$ by

$$
\mathscr{J} 1=j, \mathscr{J} j=1
$$

- \mathscr{J} satisfies

$$
\mathscr{J}^{2}=\mathscr{I},\left\langle\mathscr{J} \zeta_{1}, \mathscr{J} \zeta_{2}\right\rangle=-\left\langle\zeta_{1}, \zeta_{2}\right\rangle
$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the associated split-complex structure of \mathbb{C}^{\prime}.

- \mathscr{J} may be used to define the charge conjugation map on the split-complex Hilbert space \mathscr{H} over real field \mathbb{R} of state vectors.

Split-Complex Structure and the Charge Conjugation Map

- Define a linear endomorphism $\mathscr{J}: \mathbb{C}^{\prime} \longrightarrow \mathbb{C}^{\prime}$ by

$$
\mathscr{J} 1=j, \mathscr{J} j=1
$$

- \mathscr{J} satisfies

$$
\mathscr{J}^{2}=\mathscr{I},\left\langle\mathscr{J} \zeta_{1}, \mathscr{J} \zeta_{2}\right\rangle=-\left\langle\zeta_{1}, \zeta_{2}\right\rangle
$$

Thus \mathscr{J} is an anti-isometry. \mathscr{J} is called the associated split-complex structure of \mathbb{C}^{\prime}.

- \mathscr{J} may be used to define the charge conjugation map on the split-complex Hilbert space \mathscr{H} over real field \mathbb{R} of state vectors.

Two Hilbert Spaces \mathscr{H}^{+}and \mathscr{H}^{-}

- $\left\{\psi_{n}^{+}(\mathbf{r}, t): \psi_{n}^{+}(\mathbf{r}, t)=A_{n} \exp \left[j\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right], n=1,2, \cdots\right\}$ forms a countable basis for a spilt-complex Hilbert space \mathscr{H}^{+} over real field \mathbb{R}.
 over real field \mathbb{R}
- The map
$\mathscr{J}: \mathscr{H}^{+} \longrightarrow \mathscr{H}^{-} ; \psi_{n}^{+}(r, t) \longmapsto j \psi_{n}^{+}(r, t)=\psi_{n}^{-}(r, t)$ is an
anti-isometry is called the Charge Conjugation Map.

Two Hilbert Spaces \mathscr{H}^{+}and \mathscr{H}^{-}

- $\left\{\psi_{n}^{+}(\mathbf{r}, t): \psi_{n}^{+}(\mathbf{r}, t)=A_{n} \exp \left[j\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right], n=1,2, \cdots\right\}$ forms a countable basis for a spilt-complex Hilbert space \mathscr{H}^{+} over real field \mathbb{R}.
- $\left\{\psi_{n}^{-}(\mathbf{r}, t): \psi_{n}^{-}(\mathbf{r}, t)=A_{n} j \exp \left[j\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right], n=1,2, \cdots\right\}$ forms a countable basis for a split-complex Hilbert space \mathscr{H}^{-} over real field \mathbb{R}.
- The map

Two Hilbert Spaces \mathscr{H}^{+}and \mathscr{H}^{-}

- $\left\{\psi_{n}^{+}(\mathbf{r}, t): \psi_{n}^{+}(\mathbf{r}, t)=A_{n} \exp \left[j\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right], n=1,2, \cdots\right\}$ forms a countable basis for a spilt-complex Hilbert space \mathscr{H}^{+} over real field \mathbb{R}.
- $\left\{\psi_{n}^{-}(\mathbf{r}, t): \psi_{n}^{-}(\mathbf{r}, t)=A_{n} j \exp \left[j\left(\mathbf{k}_{n} \cdot \mathbf{r}-\omega_{n} t\right)\right], n=1,2, \cdots\right\}$ forms a countable basis for a split-complex Hilbert space \mathscr{H}^{-} over real field \mathbb{R}.
- The map
$\mathscr{J}: \mathscr{H}^{+} \longrightarrow \mathscr{H}^{-} ; \psi_{n}^{+}(\mathbf{r}, t) \longmapsto j \psi_{n}^{+}(\mathbf{r}, t)=\psi_{n}^{-}(\mathbf{r}, t)$ is an anti-isometry is called the Charge Conjugation Map.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter
- This may explain why antiparticles are so rare in the universe.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter.
- This may explain why antiparticles are so rare in the universe.

Twin Universes

- Under the interpretation, it appears that antiparticles are living in a different spacetime, $\mathbb{R}^{3+1}(t, x, y, z)$ with metric signature (-+--).
- Big Bang might have created twin (not identical though) universes, one made of matter and the other made of antimatter.
- This may explain why antiparticles are so rare in the universe.

Path Integral Redux

- The amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is obtained as

$$
\left\langle q_{F}\right| e^{-\frac{j}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{j}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- The Feynman meassure $D q(t)$ is given by

where $\delta t=\frac{T}{N}$.
- The integrand is no longer oscillatory, so it may be convergent in spacetime.

Path Integral Redux

- The amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is obtained as

$$
\left\langle q_{F}\right| e^{-\frac{j}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{j}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- The Feynman meassure $D q(t)$ is given by

$$
\int D q(t):=\lim _{N \rightarrow \infty}\left(\frac{2 \pi m \hbar j}{\delta t}\right)^{\frac{N}{2}}\left(\prod_{k=1}^{N-1} \int d q_{k}\right)
$$

where $\delta t=\frac{T}{N}$.

- The integrand is no longer oscillatory, so it may be convergent
in spacetime.

Path Integral Redux

- The amplitude of a particle to propagate from a point q_{I} to a point q_{F} in time T is obtained as

$$
\left\langle q_{F}\right| e^{-\frac{j}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{\frac{j}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- The Feynman meassure $D q(t)$ is given by

$$
\int D q(t):=\lim _{N \rightarrow \infty}\left(\frac{2 \pi m \hbar j}{\delta t}\right)^{\frac{N}{2}}\left(\prod_{k=1}^{N-1} \int d q_{k}\right)
$$

where $\delta t=\frac{T}{N}$.

- The integrand is no longer oscillatory, so it may be convergent in spacetime.

Path Integral Redux

Continued

- Under the transformation $\mathbb{R}^{3+1} \longrightarrow \mathbb{R}^{3+1} ;(t, x, y, z) \mapsto(-j t, x, y, z)$, the path integral turns into

$$
\left\langle q_{F}\right| e^{-\frac{j}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{-\frac{1}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- This path integral takes the same form as the Euclidean path integral except it is still defined in Minkowski spacetime.

Path Integral Redux

Continued

- Under the transformation $\mathbb{R}^{3+1} \longrightarrow \mathbb{R}^{3+1} ;(t, x, y, z) \mapsto(-j t, x, y, z)$, the path integral turns into

$$
\left\langle q_{F}\right| e^{-\frac{j}{\hbar} \hat{H} T}\left|q_{I}\right\rangle=\int D q(t) e^{-\frac{1}{\hbar} \int_{0}^{T} d t L(\dot{q}, q)}
$$

- This path integral takes the same form as the Euclidean path integral except it is still defined in Minkowski spacetime.

Questions?

Any Questions?

