Surfaces of Revolution in Hyperbolic 3-Space

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

Department of Mathematics Colloquium, April 26, 2013

Outline

- Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
- 2 Parametric Surfaces in Hyperbolic 3-Space
- 3 Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$
- The Illustration of the Limit of Surfaces of Revolution with H = c in $\mathbb{H}^3(-c^2)$ as $c \to 0$
- **5** Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Hyperbolic 3-Space
$$\mathbb{H}^3(-c^2)$$

 $\bullet \ \mbox{Let} \ \mathbb{R}^{3+1}$ denote the Minkowski spacetime with Lorentzian metric

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}.$$

• Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by

$$-(x^{0})^{2} + (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2} = -\frac{1}{c^{2}}.$$

• $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.

イロト イポト イヨト イヨト

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Hyperbolic 3-Space
$$\mathbb{H}^3(-c^2)$$

 $\bullet \ \mbox{Let} \ \mathbb{R}^{3+1}$ denote the Minkowski spacetime with Lorentzian metric

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}.$$

• Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by

$$-(x^{0})^{2}+(x^{1})^{2}+(x^{2})^{2}+(x^{3})^{2}=-\frac{1}{c^{2}}.$$

• $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.

イロト イポト イヨト イヨト

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Hyperbolic 3-Space
$$\mathbb{H}^3(-c^2)$$

 $\bullet \ \mbox{Let} \ \mathbb{R}^{3+1}$ denote the Minkowski spacetime with Lorentzian metric

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}.$$

ullet Hyperbolic 3-space $\mathbb{H}^3(-c^2)$ is the hyperquadric defined by

$$-(x^{0})^{2}+(x^{1})^{2}+(x^{2})^{2}+(x^{3})^{2}=-\frac{1}{c^{2}}.$$

• $\mathbb{H}^3(-c^2)$ has the constant sectional curvature $-c^2$.

(日) (同) (三) (

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

On the chart

$$U = \left\{ (x^0, x^1, x^2, x^3) \in \mathbb{H}^3(-c^2) : x^0 + x^1 > 0 \right\}$$

define

$$t = -\frac{1}{c} \log c(x^{0} + x^{1}),$$

$$x = \frac{x^{2}}{c(x^{0} + x^{1})},$$

$$y = \frac{x^{3}}{c(x^{0} + x^{1})}.$$

• $ds^2 = (dt)^2 + e^{-2ct} \{ (dx)^2 + (dy)^2 \}$

(日) (同) (三) (

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

• On the chart

$$U = \left\{ (x^0, x^1, x^2, x^3) \in \mathbb{H}^3(-c^2) : x^0 + x^1 > 0 \right\}$$

define

$$t = -\frac{1}{c} \log c(x^{0} + x^{1}),$$

$$x = \frac{x^{2}}{c(x^{0} + x^{1})},$$

$$y = \frac{x^{3}}{c(x^{0} + x^{1})}.$$

•
$$ds^2 = (dt)^2 + e^{-2ct} \{ (dx)^2 + (dy)^2 \}$$

Image: Image:

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

• \mathbb{R}^3 with coordinates t, x, y and the metric

$$g_c = (dt)^2 + e^{-2ct} \{ (dx)^2 + (dy)^2 \}$$

is called the *pseudospherical model* of hyperbolic 3-space.

- The pseudospherical model is a local chart of ℍ³(-c²), so it is not regarded as one of the standard models of hyperbolic 3-space.
- As $c \to 0$, (\mathbb{R}^3, g_c) flattens out to Euclidean 3-space \mathbb{E}^3 .

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

• \mathbb{R}^3 with coordinates t, x, y and the metric

$$g_c = (dt)^2 + e^{-2ct} \{ (dx)^2 + (dy)^2 \}$$

is called the *pseudospherical model* of hyperbolic 3-space.

 The pseudospherical model is a local chart of H³(−c²), so it is not regarded as one of the standard models of hyperbolic 3-space.

• As $c \to 0$, (\mathbb{R}^3, g_c) flattens out to Euclidean 3-space \mathbb{E}^3 .

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

• \mathbb{R}^3 with coordinates t, x, y and the metric

$$g_c = (dt)^2 + e^{-2ct} \{ (dx)^2 + (dy)^2 \}$$

is called the *pseudospherical model* of hyperbolic 3-space.

 The pseudospherical model is a local chart of ℍ³(-c²), so it is not regarded as one of the standard models of hyperbolic 3-space.

• As $c \to 0$, (\mathbb{R}^3, g_c) flattens out to Euclidean 3-space \mathbb{E}^3 .

 $\begin{array}{l} \mbox{Parametric Surfaces in Hyperbolic 3-Space}\\ \mbox{Surfaces of Revolution with CMC } H=c \mbox{ in } \mathbb{H}^3(-c^2)\\ \mbox{The Illustration of the Limit of Surfaces of Revolution with } H\\ \mbox{Minimal Surface of Revolution in } \mathbb{H}^3(-c^2)\\ \mbox{Questions} \end{array}$

Pseudospherical Model Continued

• (\mathbb{R}^3 , g_c) is isometric to a solvable Lie group G_c with a left-invariant metric

$$G_c = \left\{ \left(egin{array}{cccc} 1 & 0 & 0 & t \ 0 & e^{ct} & 0 & x \ 0 & 0 & e^{ct} & y \ 0 & 0 & 0 & 1 \end{array}
ight) : (t,x,y) \in \mathbb{R}^3
ight\}.$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in (\mathbb{R}^3, g_c) using the solvable Lie group G_c and its Lie algebra. M. Kokubu, *Weiertrass Representation for Minimal Surfaces in Hyperbolic Space*, Tohoku Math. J. **49**, 367-377 (1997)
- From here on, we will denote (\mathbb{R}^3, g_c) simply by $\mathbb{H}^3(-\varsigma_2)$, $z \to \infty$

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model

• (\mathbb{R}^3 , g_c) is isometric to a solvable Lie group G_c with a left-invariant metric

$$G_{c} = \left\{ \begin{pmatrix} 1 & 0 & 0 & t \\ 0 & e^{ct} & 0 & x \\ 0 & 0 & e^{ct} & y \\ 0 & 0 & 0 & 1 \end{pmatrix} : (t, x, y) \in \mathbb{R}^{3} \right\}.$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in (\mathbb{R}^3, g_c) using the solvable Lie group G_c and its Lie algebra. M. Kokubu, Weiertrass Representation for Minimal Surfaces in Hyperbolic Space, Tohoku Math. J. **49**, 367-377 (1997)
- From here on, we will denote (\mathbb{R}^3, g_c) simply by $\mathbb{H}^3(-c_{\pm}^2)$, $\mathbb{H}^3(-c_{\pm}^2)$

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Pseudospherical Model Continued

• (\mathbb{R}^3 , g_c) is isometric to a solvable Lie group G_c with a left-invariant metric

$$G_{c} = \left\{ \begin{pmatrix} 1 & 0 & 0 & t \\ 0 & e^{ct} & 0 & x \\ 0 & 0 & e^{ct} & y \\ 0 & 0 & 0 & 1 \end{pmatrix} : (t, x, y) \in \mathbb{R}^{3} \right\}.$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in (\mathbb{R}^3, g_c) using the solvable Lie group G_c and its Lie algebra. M. Kokubu, Weiertrass Representation for Minimal Surfaces in Hyperbolic Space, Tohoku Math. J. **49**, 367-377 (1997)
- From here on, we will denote (\mathbb{R}^3, g_c) simply by $\mathbb{H}^3(-c^2)$.

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S³, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.
- There is a one-to-one correspondence between surfaces of constant mean curvature H_h in $\mathbb{H}^3(-c^2)$ and surfaces of constant mean curvature $H_e = \pm \sqrt{H_h^2 c^2}$ in \mathbb{E}^3 .

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S³, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.
- There is a one-to-one correspondence between surfaces of constant mean curvature H_h in $\mathbb{H}^3(-c^2)$ and surfaces of constant mean curvature $H_e = \pm \sqrt{H_h^2 c^2}$ in \mathbb{E}^3 .

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S³, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.
- There is a one-to-one correspondence between surfaces of constant mean curvature H_h in $\mathbb{H}^3(-c^2)$ and surfaces of constant mean curvature $H_e = \pm \sqrt{H_h^2 c^2}$ in \mathbb{E}^3 .

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

Lawson Correspondence

- In particular, surfaces of constant mean curvature $H = \pm c$ in $\mathbb{H}^3(-c^2)$ are cousins of minimal surfaces in \mathbb{E}^3 .
- There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, *Spacelike constant mean curvature surfaces in pseudo-Rimannian space forms*, Ann. Global Anal. Geom. 8, 217-226 (1990)
 For timelike case it was proved by S. Lee. S. Lee, *Timelike surfaces of constant mean curvature one in anti-de Sitter 3-space*, Ann. Global Anal. Geom. 29, no. 4, 355-401 (2006)

• □ • • • • • • • • • •

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- In particular, surfaces of constant mean curvature $H = \pm c$ in $\mathbb{H}^3(-c^2)$ are cousins of minimal surfaces in \mathbb{E}^3 .
- There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, *Spacelike constant mean curvature surfaces in pseudo-Rimannian space forms*, Ann. Global Anal. Geom. 8, 217-226 (1990)
 For timelike case it was proved by S. Lee. S. Lee, *Timelike surfaces of constant mean curvature one in anti-de Sitter*
 - 3-space, Ann. Global Anal. Geom. 29, no. 4, 355-401 (2006)

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- Surfaces of constant mean curvature H = c in ℍ³(-c²) can be constructed with a holomorphic and a meromorphic data using Bryant's representation formula, analogously to Weierstraß representation formula for minimal surfaces in ℝ³.
 R. L. Braynt, Surfaces of mean curvature one in hyperbolic space, Astérisque 12, no. 154-155, 321-347 (1988)
- However, it is not suitable for contructing surface of revolution with constant mean curvature H = c in $\mathbb{H}^3(-c^2)$.

Parametric Surfaces in Hyperbolic 3-Space Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ The Illustration of the Limit of Surfaces of Revolution with HMinimal Surface of Revolution in $\mathbb{H}^3(-c^2)$ Questions

- Surfaces of constant mean curvature H = c in ℍ³(-c²) can be constructed with a holomorphic and a meromorphic data using Bryant's representation formula, analogously to Weierstraß representation formula for minimal surfaces in ℝ³.
 R. L. Braynt, Surfaces of mean curvature one in hyperbolic space, Astérisque 12, no. 154-155, 321-347 (1988)
- However, it is not suitable for contructing surface of revolution with constant mean curvature H = c in $\mathbb{H}^3(-c^2)$.

Conformal Parametric Surfaces in $\mathbb{H}^3(-c^2)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^3(-c^2)$ is said to be *conformal* if

$$\langle \varphi_u, \varphi_v \rangle = 0, |\varphi_u| = |\varphi_v| = e^{\omega/2},$$

where (u, v) is a local coordinate system in M and $\omega : M \to \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$ds_{\varphi}^{2} = e^{\omega} \left\{ (du)^{2} + (dv)^{2} \right\}.$$

Conformal Parametric Surfaces in $\mathbb{H}^3(-c^2)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^3(-c^2)$ is said to be *conformal* if

$$\langle \varphi_u, \varphi_v \rangle = 0, |\varphi_u| = |\varphi_v| = e^{\omega/2},$$

where (u, v) is a local coordinate system in M and $\omega : M \to \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$ds_{\varphi}^2 = e^{\omega}\left\{(du)^2 + (dv)^2\right\}.$$

Cross Product in $T_p \mathbb{H}^3(-c^3)$

- $\mathbb{H}^3(-c^2)$ is not a vector space but each tangent space $T_p\mathbb{H}^3(-c^2)$ is, and we can consider cross product on each $T_p\mathbb{H}^3(-c^2)$.
- For $\mathbf{v} = v_1 \left(\frac{\partial}{\partial t}\right)_p + v_2 \left(\frac{\partial}{\partial x}\right)_p + v_3 \left(\frac{\partial}{\partial y}\right)_p$, $\mathbf{w} = w_1 \left(\frac{\partial}{\partial t}\right)_p + w_2 \left(\frac{\partial}{\partial x}\right)_p + w_3 \left(\frac{\partial}{\partial y}\right)_p \in T_p \mathbb{H}^3(-c^2)$, define

Cross Product in $T_p \mathbb{H}^3(-c^3)$

• $\mathbb{H}^3(-c^2)$ is not a vector space but each tangent space $T_p\mathbb{H}^3(-c^2)$ is, and we can consider cross product on each $T_p\mathbb{H}^3(-c^2)$.

• For
$$\mathbf{v} = v_1 \left(\frac{\partial}{\partial t}\right)_p + v_2 \left(\frac{\partial}{\partial x}\right)_p + v_3 \left(\frac{\partial}{\partial y}\right)_p$$
,
 $\mathbf{w} = w_1 \left(\frac{\partial}{\partial t}\right)_p + w_2 \left(\frac{\partial}{\partial x}\right)_p + w_3 \left(\frac{\partial}{\partial y}\right)_p \in T_p \mathbb{H}^3(-c^2)$, define

Cross Product in
$$T_{p}\mathbb{H}^{3}(-c^{3})$$

Definition

The cross product $\mathbf{v} \times \mathbf{w}$ is defined by

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2) \left(\frac{\partial}{\partial t}\right)_p + e^{2ct} (v_3 w_1 - v_1 w_3) \left(\frac{\partial}{\partial x}\right)_p + e^{2ct} (v_1 w_2 - v_2 w_1) \left(\frac{\partial}{\partial y}\right)_p$$

where $p = (t, x, y) \in \mathbb{H}^{3}(-c^{2})$.

< ロ > < 同 > < 回 > < 回 >

э

The Mean Curvature of a Conformal Parametric Surface in $\mathbb{H}^3(-c^2)$

If a parametric surface $\varphi: M \longrightarrow \mathbb{H}^3(-c^2)$ is conformal, the mean curvature H is computed by the formula

$$H=\frac{G\ell+E\mathfrak{n}-2F\mathfrak{m}}{2(EG-F^2)},$$

where

$$\begin{split} E &= \langle \varphi_{u}, \varphi_{u} \rangle, \ F &= \langle \varphi_{u}, \varphi_{v} \rangle, \ G &= \langle \varphi_{v}, \varphi_{v} \rangle \\ \ell &= \langle \varphi_{uu}, N \rangle, \ \mathfrak{m} &= \langle \varphi_{uv}, N \rangle, \ \mathfrak{n} &= \langle \varphi_{vv}, N \rangle \end{split}$$

and $N = \frac{\varphi_u \times \varphi_v}{||\varphi_u \times \varphi_v||}$ is a unit normal vector field on φ .

Rotations in
$$\mathbb{H}^3(-c^2)$$

- Rotations about the *t*-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^3(-c^2)$.
- The rotation of a profile curve α(u) = (u, h(u), 0) in the tx-plane about the t-axis through an angle v:

$$\varphi(u,v) = (u, h(u)\cos v, h(u)\sin v).$$

Rotations in
$$\mathbb{H}^3(-c^2)$$

- Rotations about the *t*-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^3(-c^2)$.
- The rotation of a profile curve α(u) = (u, h(u), 0) in the tx-plane about the t-axis through an angle v:

$$\varphi(u,v) = (u, h(u) \cos v, h(u) \sin v).$$

Differential Equation of h(u) for Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$

• The mean curvature H of a conformal surface of revolution in $\mathbb{H}^3(-c^2)$ is computed to be

$$H = \frac{-h''(u) + h(u)}{2e^{-2cu}(h(u))^3}.$$

• By setting H = c, we obtain the second order non-linear differential equation of h(u)

$$h''(u) - h(u) + 2ce^{-2cu}(h(u))^3 = 0.$$

Differential Equation of h(u) for Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$

• The mean curvature H of a conformal surface of revolution in $\mathbb{H}^3(-c^2)$ is computed to be

$$H = \frac{-h''(u) + h(u)}{2e^{-2cu}(h(u))^3}.$$

• By setting H = c, we obtain the second order non-linear differential equation of h(u)

$$h''(u) - h(u) + 2ce^{-2cu}(h(u))^3 = 0.$$

Surfaces of Revolution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Limit Behavior of Surfaces of Revolution with CMC H = cas $c \rightarrow 0$

• If $c \rightarrow 0$, then the differential equation of h(u) becomes

 $h^{\prime\prime}(u)-h(u)=0,$

which is a harmonic oscillator. Its solution is

 $h(u) = c_1 \cosh u + c_2 \sinh u.$

• For $c_1 = 1$, $c_2 = 0$, we obtain the catenoid

 $\varphi(u,v) = (u,\cosh u \cos v,\cosh u \sin v),$

the minimal surface of revolution in \mathbb{E}^3

Limit Behavior of Surfaces of Revolution with CMC H = cas $c \rightarrow 0$

• If $c \rightarrow 0$, then the differential equation of h(u) becomes

 $h^{\prime\prime}(u)-h(u)=0,$

which is a harmonic oscillator. Its solution is

 $h(u) = c_1 \cosh u + c_2 \sinh u.$

• For $c_1 = 1$, $c_2 = 0$, we obtain the catenoid

 $\varphi(u,v) = (u, \cosh u \cos v, \cosh u \sin v),$

the minimal surface of revolution in \mathbb{E}^3 .

Catenoid in \mathbb{E}^3

Surface of Revolution with CMC H = 1 in $\mathbb{H}^3(-1)$

 $\begin{array}{l} \mbox{Surfaces of Constant Mean Curvature in Hyperbolic 3-Space} \\ \mbox{Parametric Surfaces in Hyperbolic 3-Space} \\ \mbox{Surfaces of Revolution with M} \\ \mbox{The Illustration of the Limit of Surfaces of Revolution with H} \\ \mbox{Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$} \\ \mbox{Questions} \end{array}$

Surface of Revolution with CMC H = 1 in $\mathbb{H}^{3}(-1)$

Surfaces of Revolution

 $\begin{array}{l} \text{Surfaces of Constant Mean Curvature in Hyperbolic 3-Space} \\ \text{Parametric Surfaces in Hyperbolic 3-Space} \\ \text{Surfaces of Revolution with CMC} H = c in \mathbb{H}^3(-c^2) \\ \text{The Illustration of the Limit of Surfaces of Revolution with } H \\ \\ \text{Minimal Surface of Revolution in } \mathbb{H}^3(-c^2) \\ \\ \text{Questions} \end{array}$

Surface of Revolution with CMC $H = \frac{1}{4}$ in $\mathbb{H}^3\left(-\frac{1}{16}\right)$

Figure : CMC $H = \frac{1}{2}$: Surface of Revolution $(3 \times 3 \times 3 \times 3 \times 3)$ Surfaces of Revolution

 $\begin{array}{l} \mbox{Surfaces of Constant Mean Curvature in Hyperbolic 3-Space} \\ \mbox{Parametric Surfaces in Hyperbolic 3-Space} \\ \mbox{Surfaces of Revolution with M} \\ \mbox{The Illustration of the Limit of Surfaces of Revolution with H} \\ \mbox{Minimal Surface of Revolution in $\mathbb{H}^3(-c^2)$} \\ \mbox{Questions} \end{array}$

Surface of Revolution with CMC $H = \frac{1}{8}$ in $\mathbb{H}^3\left(-\frac{1}{64}\right)$

Figure : CMC $H = \frac{1}{2}$: Surface of Revolution

Surface of Revolution with CMC $H = \frac{1}{256}$ in $\mathbb{H}^3\left(-\frac{1}{65536}\right)$

Figure : CMC $H = \frac{1}{2\pi\epsilon}$: Surface of Revolution

Animations

- Animation of Profile Curves h(u) http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ http://www.math.usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^3)

Animations

- Animation of Profile Curves h(u) http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC H = c in $\mathbb{H}^3(-c^2)$ http://www.math.usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^3)

Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_M ||d\varphi||^2$$

under every compactly supported variation of ϕ .

- $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_{M} ||d\varphi||^2$$

under every compactly supported variation of ϕ .

- $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

Definition

A smooth map $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if it is a critical point of the energy functional

$$E(\varphi) = \frac{1}{2} \int_{M} ||d\varphi||^2$$

under every compactly supported variation of φ .

- $\varphi: M \longrightarrow \mathbb{E}^3$ is harmonic if and only if $\triangle \varphi = 0$ where $\triangle = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$ is minimal if and only if it is harmonic i.e. $\triangle \varphi = 0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

• For any conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$, the mean curvature H is computed to be

$$H=\frac{1}{2}e^{-\omega}\langle \bigtriangleup \varphi, N\rangle.$$

• A conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$ is minimal if and only if H = 0.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^3

• For any conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$, the mean curvature H is computed to be

$$H=\frac{1}{2}e^{-\omega}\langle \bigtriangleup \varphi, N\rangle.$$

• A conformal surface $\varphi: M \longrightarrow \mathbb{E}^3$ is minimal if and only if H = 0.

Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In ℍ³(-c²), there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu's representation formula.
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.

Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In ℍ³(-c²), there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu's representation formula.
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.

Minimal Surfaces in $\mathbb{H}^3(-c^2)$

- In ℍ³(-c²), there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^3(-c^2)$ can be in general constructed by Kokubu's representation formula.
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^3(-c^2)$.

Construction of Minimal Surface in $\mathbb{H}^3(-c^2)$

• The area functional of $\varphi: M \longrightarrow \mathbb{H}^3(-c^2)$ is

$$J = \int_{t_1}^{t_2} f(x, x_t, t) dt = \int_{t_1}^{t_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dt}\right)^2} dt.$$

• The Euler-Lagrange equation $\frac{\partial f}{\partial x} - \frac{d}{dt} \frac{\partial f}{\partial x_t} = 0$ is

$$\frac{d^2x(t)}{dt^2} - 2\frac{dx(t)}{dt} - x(t) - e^{-2ct} \left(\frac{dx(t)}{dt}\right)^3 = 0.$$

(日) (同) (三) (

Construction of Minimal Surface in $\mathbb{H}^3(-c^2)$

• The area functional of $\varphi: M \longrightarrow \mathbb{H}^3(-c^2)$ is

$$J = \int_{t_1}^{t_2} f(x, x_t, t) dt = \int_{t_1}^{t_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dt}\right)^2} dt.$$

• The Euler-Lagrange equation $\frac{\partial f}{\partial x} - \frac{d}{dt} \frac{\partial f}{\partial x_t} = 0$ is

$$\frac{d^2x(t)}{dt^2}-2\frac{dx(t)}{dt}-x(t)-e^{-2ct}\left(\frac{dx(t)}{dt}\right)^3=0.$$

(日) (同) (三) (

Minimal Surface of Revolution in $\mathbb{H}^3(-1)$

Figure : Minimal Surface of Revolution in $\mathbb{H}^{3}(-1)$: Profile Curve

Surfaces of Revolution

Minimal Surface of Revolution in $\mathbb{H}^3(-1)$

Figure : Minimal Surafce of Revolution in $\mathbb{H}^3(-1)$

Surfaces of Revolution

Questions?

Any Questions?

Surfaces of Revolution

< D > < P > < P > < P >