Surfaces of Revolution in Hyperbolic 3-Space

Sungwook Lee

Department of Mathematics, University of Southern Mississippi

Department of Mathematics Colloquium, April 26, 2013

Outline

(1) Surfaces of Constant Mean Curvature in Hyperbolic 3-Space
(2) Parametric Surfaces in Hyperbolic 3-Space
(3) Surfaces of Revolution with $\mathrm{CMC} H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

44 The Illustration of the Limit of Surfaces of Revolution with $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ as $c \rightarrow 0$
(5) Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Questions

Hyperbolic 3-Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric

$$
d s^{2}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}
$$

- Hyperbolic 3 -space $\mathbb{H}^{3}\left(-c^{2}\right)$ is the hyperquadric defined by
- $\mathbb{H}^{3}\left(-c^{2}\right)$ has the constant sectional curvature $-c^{2}$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$
Questions

Hyperbolic 3-Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric

$$
d s^{2}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}
$$

- Hyperbolic 3 -space $\mathbb{H}^{3}\left(-c^{2}\right)$ is the hyperquadric defined by

$$
-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}=-\frac{1}{c^{2}} .
$$

- $\mathbb{H}^{3}\left(-c^{2}\right)$ has the constant sectional curvature $-c^{2}$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Hyperbolic 3 -Space $\mathbb{H}^{3}\left(-c^{2}\right)$

- Let \mathbb{R}^{3+1} denote the Minkowski spacetime with Lorentzian metric

$$
d s^{2}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}
$$

- Hyperbolic 3 -space $\mathbb{H}^{3}\left(-c^{2}\right)$ is the hyperquadric defined by

$$
-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}=-\frac{1}{c^{2}} .
$$

- $\mathbb{H}^{3}\left(-c^{2}\right)$ has the constant sectional curvature $-c^{2}$.

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Questions

Pseudospherical Model

- On the chart

$$
U=\left\{\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in \mathbb{H}^{3}\left(-c^{2}\right): x^{0}+x^{1}>0\right\}
$$

define

$$
\begin{aligned}
& t=-\frac{1}{c} \log c\left(x^{0}+x^{1}\right), \\
& x=\frac{x^{2}}{c\left(x^{0}+x^{1}\right)} \\
& y=\frac{x^{3}}{c\left(x^{0}+x^{1}\right)} .
\end{aligned}
$$$d s^{2}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Questions

Pseudospherical Model

- On the chart

$$
U=\left\{\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in \mathbb{H}^{3}\left(-c^{2}\right): x^{0}+x^{1}>0\right\}
$$

define

$$
\begin{aligned}
& t=-\frac{1}{c} \log c\left(x^{0}+x^{1}\right), \\
& x=\frac{x^{2}}{c\left(x^{0}+x^{1}\right)} \\
& y=\frac{x^{3}}{c\left(x^{0}+x^{1}\right)} .
\end{aligned}
$$

- $d s^{2}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Questions

Pseudospherical Model

Continued

- \mathbb{R}^{3} with coordinates t, x, y and the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

is called the pseudospherical model of hyperbolic 3-space.

- The pseudospherical model is a local chart of $\mathbb{H}^{3}\left(-c^{2}\right)$, so it is not regarded as one of the standard models of hyperbolic 3-space
- As $c \rightarrow 0,\left(\mathbb{R}^{3}, g_{c}\right)$ flattens out to Euclidean 3-space \mathbb{E}^{3}

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Pseudospherical Model

Continued

- \mathbb{R}^{3} with coordinates t, x, y and the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

is called the pseudospherical model of hyperbolic 3-space.

- The pseudospherical model is a local chart of $\mathbb{H}^{3}\left(-c^{2}\right)$, so it is not regarded as one of the standard models of hyperbolic 3-space.
- As $c \rightarrow 0$, $\left(\mathbb{R}^{3}, g_{c}\right)$ flattens out to Euclidean 3-space \mathbb{E}^{3}

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Pseudospherical Model

Continued

- \mathbb{R}^{3} with coordinates t, x, y and the metric

$$
g_{c}=(d t)^{2}+e^{-2 c t}\left\{(d x)^{2}+(d y)^{2}\right\}
$$

is called the pseudospherical model of hyperbolic 3-space.

- The pseudospherical model is a local chart of $\mathbb{H}^{3}\left(-c^{2}\right)$, so it is not regarded as one of the standard models of hyperbolic 3-space.
- As $c \rightarrow 0,\left(\mathbb{R}^{3}, g_{c}\right)$ flattens out to Euclidean 3-space \mathbb{E}^{3}.

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$
Questions

Pseudospherical Model

Continued

- $\left(\mathbb{R}^{3}, g_{c}\right)$ is isometric to a solvable Lie group G_{c} with a left-invariant metric

$$
G_{c}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & t \\
0 & e^{c t} & 0 & x \\
0 & 0 & e^{c t} & y \\
0 & 0 & 0 & 1
\end{array}\right):(t, x, y) \in \mathbb{R}^{3}\right\}
$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in $\left(\mathbb{R}^{3}, g_{c}\right)$ using the solvable Lie group G_{c} and its Lie algebra. M. Kokubu, Weiertrass Representation for Minimal Surfaces in Hyperbolic Space, Tohoku Math. J. 49, 367-377 (1997)

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Pseudospherical Model

Continued

- $\left(\mathbb{R}^{3}, g_{c}\right)$ is isometric to a solvable Lie group G_{c} with a left-invariant metric

$$
G_{c}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & t \\
0 & e^{c t} & 0 & x \\
0 & 0 & e^{c t} & y \\
0 & 0 & 0 & 1
\end{array}\right):(t, x, y) \in \mathbb{R}^{3}\right\}
$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in $\left(\mathbb{R}^{3}, g_{c}\right)$ using the solvable Lie group G_{c} and its Lie algebra. M. Kokubu, Weiertrass Representation for Minimal Surfaces in Hyperbolic Space, Tohoku Math. J. 49, 367-377 (1997)

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Pseudospherical Model

Continued

- $\left(\mathbb{R}^{3}, g_{c}\right)$ is isometric to a solvable Lie group G_{c} with a left-invariant metric

$$
G_{c}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & t \\
0 & e^{c t} & 0 & x \\
0 & 0 & e^{c t} & y \\
0 & 0 & 0 & 1
\end{array}\right):(t, x, y) \in \mathbb{R}^{3}\right\}
$$

- M. Kokubu studied Weiertraß representation of minimal surfaces in $\left(\mathbb{R}^{3}, g_{c}\right)$ using the solvable Lie group G_{c} and its Lie algebra. M. Kokubu, Weiertrass Representation for Minimal Surfaces in Hyperbolic Space, Tohoku Math. J. 49, 367-377 (1997)
- From here on, we will denote $\left(\mathbb{R}^{3}, g_{c}\right)$ simply by $\mathbb{H}^{3}\left(-c^{2}\right)$,

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Lawson Correspondence

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S^{3}, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common

There is a one-to-one correspondence between surfaces of constant mean curvature H_{h} in $\mathbb{H}^{3}\left(-c^{2}\right)$ and surfaces of constant mean curvature

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Lawson Correspondence

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S^{3}, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.
- There is a one-to-one correspondence between surfaces of constant mean curvature H_{h} in $\mathbb{H}^{3}\left(-c^{2}\right)$ and surfaces of constant mean curvature $H_{e}= \pm \sqrt{ } H_{h}^{2}-c^{2}$ in \mathbb{E}^{3}

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Lawson Correspondence

- There is an interesting correspondence, called Lawson correspondence, between constant mean curvature surfaces in different Riemannian space forms. H. Blain Lawson, Jr., Complete minimal surfaces in S^{3}, Ann. of Math. 92, 335-374 (1970)
- Those corresponding constant mean curvature surfaces satisfy the same Gauß-Codazzi equations, so they share many geometric properties in common.
- There is a one-to-one correspondence between surfaces of constant mean curvature H_{h} in $\mathbb{H}^{3}\left(-c^{2}\right)$ and surfaces of constant mean curvature $H_{e}= \pm \sqrt{H_{h}^{2}-c^{2}}$ in \mathbb{E}^{3}.

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Questions

Lawson Correspondence

Continued

- In particular, surfaces of constant mean curvature $H= \pm c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ are cousins of minimal surfaces in \mathbb{E}^{3}.

There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, Spacelike constant mean curvature surfaces in pseudo-Rimannian space forms, Ann. Global Anal. Geom. 8, 217-226 (1990)
For timelike case it was proved by S. Lee. S. Lee, Timelike
surfaces of constant mean curvature one in anti-de Sitter 3-space, Ann. Global Anal. Geom. 29, no. 4, 355-401 (2006)

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Lawson Correspondence
 Continued

- In particular, surfaces of constant mean curvature $H= \pm c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ are cousins of minimal surfaces in \mathbb{E}^{3}.
- There is a Lawson type correspondence between constant mean curvature surfaces in different Lorentzian space forms. For spacelike case it was proved by B. Palmer. B. Palmer, Spacelike constant mean curvature surfaces in pseudo-Rimannian space forms, Ann. Global Anal. Geom. 8, 217-226 (1990)
For timelike case it was proved by S. Lee. S. Lee, Timelike surfaces of constant mean curvature one in anti-de Sitter 3-space, Ann. Global Anal. Geom. 29, no. 4, 355-401 (2006)

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Lawson Correspondence

Continued

- Surfaces of constant mean curvature $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ can be constructed with a holomorphic and a meromorphic data using Bryant's representation formula, analogously to Weierstraß representation formula for minimal surfaces in \mathbb{E}^{3}.
R. L. Braynt, Surfaces of mean curvature one in hyperbolic space, Astérisque 12, no. 154-155, 321-347 (1988)
- However, it is not suitable for contructing surface of revolution with constant mean curvature $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Parametric Surfaces in Hyperbolic 3-Space

Lawson Correspondence
 Continued

- Surfaces of constant mean curvature $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$ can be constructed with a holomorphic and a meromorphic data using Bryant's representation formula, analogously to Weierstraß representation formula for minimal surfaces in \mathbb{E}^{3}.
R. L. Braynt, Surfaces of mean curvature one in hyperbolic space, Astérisque 12, no. 154-155, 321-347 (1988)
- However, it is not suitable for contructing surface of revolution with constant mean curvature $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$.

Conformal Parametric Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is said to be conformal if

$$
\left\langle\varphi_{u}, \varphi_{v}\right\rangle=0,\left|\varphi_{u}\right|=\left|\varphi_{v}\right|=e^{\omega / 2}
$$

where (u, v) is a local coordinate system in M and $\omega: M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

Conformal Parametric Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

Definition

A parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is said to be conformal if

$$
\left\langle\varphi_{u}, \varphi_{v}\right\rangle=0,\left|\varphi_{u}\right|=\left|\varphi_{v}\right|=e^{\omega / 2}
$$

where (u, v) is a local coordinate system in M and $\omega: M \rightarrow \mathbb{R}$ is a real-valued function in M.

The induced metric on the conformal parametric surface is given by

$$
d s_{\varphi}^{2}=e^{\omega}\left\{(d u)^{2}+(d v)^{2}\right\} .
$$

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

- $\mathbb{H}^{3}\left(-c^{2}\right)$ is not a vector space but each tangent space $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$ is, and we can consider cross product on each $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$.

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

- $\mathbb{H}^{3}\left(-c^{2}\right)$ is not a vector space but each tangent space $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$ is, and we can consider cross product on each $T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$.
- For $\mathbf{v}=v_{1}\left(\frac{\partial}{\partial t}\right)_{p}+v_{2}\left(\frac{\partial}{\partial x}\right)_{p}+v_{3}\left(\frac{\partial}{\partial y}\right)_{p}$,
$\mathbf{w}=w_{1}\left(\frac{\partial}{\partial t}\right)_{p}+w_{2}\left(\frac{\partial}{\partial x}\right)_{p}+w_{3}\left(\frac{\partial}{\partial y}\right)_{p} \in T_{p} \mathbb{H}^{3}\left(-c^{2}\right)$, define

Cross Product in $T_{p} \mathbb{H}^{3}\left(-c^{3}\right)$

Continued

Definition

The cross product $\mathbf{v} \times \mathbf{w}$ is defined by

$$
\begin{aligned}
\mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}\right. & \left.-v_{3} w_{2}\right)\left(\frac{\partial}{\partial t}\right)_{p} \\
& +e^{2 c t}\left(v_{3} w_{1}-v_{1} w_{3}\right)\left(\frac{\partial}{\partial x}\right)_{p} \\
& +e^{2 c t}\left(v_{1} w_{2}-v_{2} w_{1}\right)\left(\frac{\partial}{\partial y}\right)_{p}
\end{aligned}
$$

where $p=(t, x, y) \in \mathbb{H}^{3}\left(-c^{2}\right)$.

The Mean Curvature of a Conformal Parametric Surface in $\mathbb{H}^{3}\left(-c^{2}\right)$

If a parametric surface $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is conformal, the mean curvature H is computed by the formula

$$
H=\frac{G \ell+E \mathfrak{n}-2 F \mathfrak{m}}{2\left(E G-F^{2}\right)}
$$

where

$$
\begin{aligned}
E & =\left\langle\varphi_{u}, \varphi_{u}\right\rangle, F=\left\langle\varphi_{u}, \varphi_{v}\right\rangle, G=\left\langle\varphi_{v}, \varphi_{v}\right\rangle \\
\ell & =\left\langle\varphi_{u u}, N\right\rangle, \mathfrak{m}=\left\langle\varphi_{u v}, N\right\rangle, \mathfrak{n}=\left\langle\varphi_{v v}, N\right\rangle
\end{aligned}
$$

and $N=\frac{\varphi_{u} \times \varphi_{v}}{\left\|\varphi_{u} \times \varphi_{v}\right\|}$ is a unit normal vector field on φ.

Rotations in $\mathbb{H}^{3}\left(-c^{2}\right)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^{3}\left(-c^{2}\right)$.
- The rotation of a profile curve $\alpha(u)=(u, h(u), 0)$ in the $t x$-plane about the t-axis through an angle v

$$
\varphi(u, v)=(u, h(u) \cos v, h(u) \sin v)
$$

Rotations in $\mathbb{H}^{3}\left(-c^{2}\right)$

- Rotations about the t-axis are the only type of Euclidean rotations that can be considered in $\mathbb{H}^{3}\left(-c^{2}\right)$.
- The rotation of a profile curve $\alpha(u)=(u, h(u), 0)$ in the $t x$-plane about the t-axis through an angle v :

$$
\varphi(u, v)=(u, h(u) \cos v, h(u) \sin v)
$$

Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$ is computed to be

$$
H=\frac{-h^{\prime \prime}(u)+h(u)}{2 e^{-2 c u}(h(u))^{3}} .
$$

- By setting $H=c$, we obtain the second order non-linear differential equation of $h(u)$

$$
h^{\prime \prime}(u)-h(u)+2 c e^{-2 c u}(h(u))^{3}=0
$$

Differential Equation of $h(u)$ for Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The mean curvature H of a conformal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$ is computed to be

$$
H=\frac{-h^{\prime \prime}(u)+h(u)}{2 e^{-2 c u}(h(u))^{3}} .
$$

- By setting $H=c$, we obtain the second order non-linear differential equation of $h(u)$

$$
h^{\prime \prime}(u)-h(u)+2 c e^{-2 c u}(h(u))^{3}=0 .
$$

Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{\mathbf{3}}\left(-c^{\mathbf{2}}\right)$

Limit Behavior of Surfaces of Revolution with CMC H=c as $c \rightarrow 0$

- If $c \rightarrow 0$, then the differential equation of $h(u)$ becomes

$$
h^{\prime \prime}(u)-h(u)=0,
$$

which is a harmonic oscillator. Its solution is

$$
h(u)=c_{1} \cosh u+c_{2} \sinh u .
$$

- For $c_{1}=1, c_{2}=0$, we obtain the catenoid
$\varphi(u, v)=(u, \cosh u \cos v, \cosh u \sin v)$,
the minimal surface of revolution in \mathbb{E}^{3}

Limit Behavior of Surfaces of Revolution with CMC H = c as $c \rightarrow 0$

- If $c \rightarrow 0$, then the differential equation of $h(u)$ becomes

$$
h^{\prime \prime}(u)-h(u)=0,
$$

which is a harmonic oscillator. Its solution is

$$
h(u)=c_{1} \cosh u+c_{2} \sinh u
$$

- For $c_{1}=1, c_{2}=0$, we obtain the catenoid

$$
\varphi(u, v)=(u, \cosh u \cos v, \cosh u \sin v)
$$

the minimal surface of revolution in \mathbb{E}^{3}.

Catenoid in \mathbb{E}^{3}

Surfaces of Revolution

Surface of Revolution with CMC $H=1$ in $\mathbb{H}^{3}(-1)$

Figure: $\mathrm{CMC} H=1$: Profile Curve

Surfaces of Revolution

Surface of Revolution with CMC $H=1$ in $\mathbb{H}^{3}(-1)$

Continued

Surface of Revolution with CMC $H=\frac{1}{4}$ in $\mathbb{H}^{3}\left(-\frac{1}{16}\right)$

Figure: CMC $H=\frac{1}{3}$. Surface of Revolution

Surface of Revolution with CMC $H=\frac{1}{8}$ in $\mathbb{H}^{3}\left(-\frac{1}{64}\right)$

Figure: CMC $H=\frac{1}{2}$. Surface of Revolution

Surface of Revolution with CMC $H=\frac{1}{256}$ in $\mathbb{H}^{3}\left(-\frac{1}{65556}\right)$

Animations

- Animation of Profile Curves $h(u)$ http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC H=c in $\mathbb{H}^{3}\left(-c^{2}\right)$
http://www math.usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^{3})

Animations

- Animation of Profile Curves $h(u)$ http://www.math.usm.edu/lee/profileanim.gif
- Animation of Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
http://www.math.usm.edu/lee/cmcanim.gif http://www.math.usm.edu/lee/cmcanim2.gif (with catenoid in \mathbb{E}^{3})

Harmonic Maps and Minimal Surfaces in \mathbb{E}^{3}

Definition

A smooth $\operatorname{map} \varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if it is a critical point of the energy functional

$$
E(\varphi)=\frac{1}{2} \int_{M}\|d \varphi\|^{2}
$$

under every compactly supported variation of φ.

- $\varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if and only if $\triangle \varphi=0$ where
$\triangle=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$ is minimal if and only if it is harmonic i.e. $\triangle \varphi=0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^{3}

Definition

A smooth $\operatorname{map} \varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if it is a critical point of the energy functional

$$
E(\varphi)=\frac{1}{2} \int_{M}\|d \varphi\|^{2}
$$

under every compactly supported variation of φ.

- $\varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if and only if $\triangle \varphi=0$ where $\triangle=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$ is minimal if and only if it is harmonic i.e. $\triangle \varphi=0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^{3}

Definition

A smooth map $\varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if it is a critical point of the energy functional

$$
E(\varphi)=\frac{1}{2} \int_{M}\|d \varphi\|^{2}
$$

under every compactly supported variation of φ.

- $\varphi: M \longrightarrow \mathbb{E}^{3}$ is harmonic if and only if $\triangle \varphi=0$ where $\triangle=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ is Laplacian.
- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$ is minimal if and only if it is harmonic i.e. $\triangle \varphi=0$.

Harmonic Maps and Minimal Surfaces in \mathbb{E}^{3}
 Continued

- For any conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$, the mean curvature H is computed to be

$$
H=\frac{1}{2} e^{-\omega}\langle\triangle \varphi, N\rangle .
$$

- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$ is minimal if and only if $H=0$

Harmonic Maps and Minimal Surfaces in \mathbb{E}^{3}
 Continued

- For any conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$, the mean curvature H is computed to be

$$
H=\frac{1}{2} e^{-\omega}\langle\triangle \varphi, N\rangle .
$$

- A conformal surface $\varphi: M \longrightarrow \mathbb{E}^{3}$ is minimal if and only if $H=0$.

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^{\mathbf{3}}\left(-c^{\mathbf{2}}\right)$
Questions

Minimal Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

- In $\mathbb{H}^{3}\left(-c^{2}\right)$, there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ can be in general constructed by Kokubu's representation formula
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Minimal Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

- In $\mathbb{H}^{3}\left(-c^{2}\right)$, there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ can be in general constructed by Kokubu's representation formula.
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$

Minimal Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$

- In $\mathbb{H}^{3}\left(-c^{2}\right)$, there is no relationship bewteen minimal surfaces and mean curvature since harmonic map equation is no longer Laplace's equation.
- Minimal surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ can be in general constructed by Kokubu's representation formula.
- However it is not suitable for contructing minimal surface of revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$.

Construction of Minimal Surface in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The area functional of $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is

$$
J=\int_{t_{1}}^{t_{2}} f\left(x, x_{t}, t\right) d t=\int_{t_{1}}^{t_{2}} 2 \pi x \sqrt{1+\left(\frac{d x}{d t}\right)^{2}} d t
$$

- The Euler-Lagrange equation $\frac{\partial f}{\partial x}-\frac{d}{d t} \frac{\partial f}{\partial x_{t}}=0$ is

Parametric Surfaces in Hyperbolic 3-Space
Surfaces of Revolution with CMC $H=c$ in $\mathbb{H}^{3}\left(-c^{2}\right)$
The Illustration of the Limit of Surfaces of Revolution with H
Minimal Surface of Revolution in $\mathbb{H}^{3}\left(-c^{2}\right)$
Questions

Construction of Minimal Surface in $\mathbb{H}^{3}\left(-c^{2}\right)$

- The area functional of $\varphi: M \longrightarrow \mathbb{H}^{3}\left(-c^{2}\right)$ is

$$
J=\int_{t_{1}}^{t_{2}} f\left(x, x_{t}, t\right) d t=\int_{t_{1}}^{t_{2}} 2 \pi x \sqrt{1+\left(\frac{d x}{d t}\right)^{2}} d t
$$

- The Euler-Lagrange equation $\frac{\partial f}{\partial x}-\frac{d}{d t} \frac{\partial f}{\partial x_{t}}=0$ is

$$
\frac{d^{2} x(t)}{d t^{2}}-2 \frac{d x(t)}{d t}-x(t)-e^{-2 c t}\left(\frac{d x(t)}{d t}\right)^{3}=0
$$

Minimal Surface of Revolution in $\mathbb{H}^{3}(-1)$

Figure : Minimal Surface of Revolution in $\mathbb{H}^{3}(-1)$: Profile Curve

Minimal Surface of Revolution in $\mathbb{H}^{3}(-1)$

Continued

Figure : Minimal Surafce of Revolution in $\mathbb{H}^{3}(-1)$

Questions?

Any Questions?

