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The Metric Tensor gij

Let (M,g) be an n-dimensional Riemannian or

Pseudo-Riemannian manifold. The Riemannian or

pseudo-Riemannian metric g can be written locally as

g = gijdx
i ⊗dx j

The n×n matrix gij is called the metric tensor.

Since gij is a symmetric tensor, it can be diagonalized. Hence

WLOG we may assume that gij = 0 if i 6= j .
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The Christo�el Symbols Γkij

The Christo�el symbols are associated with the di�erentiation

of vector �elds, called the Levi-Civita connection.

The Christo�el symbols are given by

Γk
ij =

1

2 ∑
l

gkl

{
∂gjl
∂x i

+
∂gli
∂x j
−

∂gij
∂x l

}
,

where gkl is the inverse of the metric tensor.
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The Curvature

The Riemann curvature tensor R l
ijk isgiven by

R l
ijk =

∂

∂x j
Γl
ik
− ∂

∂xk
Γl
ij +∑

p

{
Γl
jpΓp

ik −Γl
kpΓp

ij

}
The sectional curvature K (X ,Y )of (M,g)with respect to the

plane spanned by X ,Y ∈ TpM is

Kp(X ,Y ) = g iiR j
iji

assuming that X ,Y ∈ span
{

∂

∂x i
, ∂

∂x j

}
.

Ricci cuvature tensor is given by

Ricp

(
∂

∂x i
,

∂

∂x j

)
= ∑

k

Rk
ikj

We denote Ricp
(

∂

∂x i
, ∂

∂x j

)
simply by Rij .
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The Curvature
Continued

The scalar curvature Scal(p) is given by

Scal(p) = ∑
i

g iiRii

It is also given in terms of the sectional curvature by

Scal(p) = ∑
i 6=j

Kp

(
∂

∂x i
,

∂

∂x j

)
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Maximally Symmetric Spaces

Defn. A Riemannian manifold (M,g) is said to be maximally

symmetric if (M,g) has constant sectional curvature κ .

Thm. If a Riemannian manifold (M,g) is maximally

symmetric, then

Rii = κ(n−1)gii

whereκ is the sectional curvature of (M,g) and n = dimM.

Cor. If (M,g) has the constant sectional curvature κ , then

Scal(p) = n(n−1)κ

where n = dimM
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Finding the Fundamental Equations of Gravitation

The fundamental equations of Einstein's theory of gravitation can

be obtained by imposing the following requirements.

The �eld equations should be independent of

coordinatesystems i.e. they should be tensorial.

Like other �eld equations, they should be partial di�erential

equations of second order for the componenets gij of the
unknown metric tensor.

They are a relativistic generalization of the Poisson equation of

Newtonian gravitational potential

∇
2
φ = 4πGρ

where ρ is the mass density.

Since the energy-momentum tensor Tij isthe special relativistic

analogue of the mass density, it should be the source of the

gravitational �eld.

If the space is �at, Tij should vanish.
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The Einstein Field Equations

The equations satisfying all these requirements are given by

Gij = 8πGTij

where Gij = Rij − 1
2
Rgij . Gij is called the Einstein tensor.

The Einstein Field Equations

Rij −
1

2
Rgij = 8πGTij

were derived independently and almost simultaneously by

Einstein and Hilbert (1915)
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Vaccum Field Equations

Outside the �eld-producing masses the energy-momentum

tensor vanishes and we obtain vaccum �eld equations

Rij −
1

2
Rgij = 0

For any i 6= j , gij = 0 and so Rij = 0.

From Rii − 1
2
Rgii = 0, we have R− n

2
R = ∑i g

iiRii − n
2
R = 0.

Hence (n−2)R = 0.

For n = 4, R = 0 and hence the vaccum �eld equations reduce

to

Rij = 0

i.e. vanishing Ricci curvature tensor.
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The Schwarzschild Solution

Consider a static spherically symmetric metric as a solution of

the vaccum �eld equations.

Ansatz for a static isotropic metric

ds2 =−A(r)dt2 +B(r)dr2 + r2(dθ
2 + sin2 θdφ

2)

In addition, we want the solution to be asymptotically �at i.e.

it approaches Minkowski �at spacetime if r → ∞.

lim
r→∞

A(r) = lim
r→∞

B(r) = 1

Although it is a part of the assumptions, a spherically

symmetric solution is static i.e. independent of t. This is
known as Birkho�'s theorem.
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Calculations

The nonzero Christo�el symbols are

Γr
rr =

B ′

2B

Γr
tt =

A′

2B

Γr
θθ = − r

B

Γr
φφ = − r sin2 θ

B

Γθ
θ r = Γ

φ

φ r =
1

r

Γt
tr =

A′

2A

Γθ
φφ = −sinθ cosθ

Γ
φ

φθ
= cotθ
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Calculations
Continued

The Ricci tensors are

Rtt =
A′′

2B
− A′

4B

(
A′

A
+

B ′

B

)
+

A′

rB

Rrr = −A′′

2A
+

A′

4A

(
A′

A
+

B ′

B

)
+

B ′

rB

Rθθ = 1− 1

B
− r

2B

(
A′

A
− B ′

B

)
Rφφ = sin2 θRθθ

BRtt +ARrr = 1
rB (A′B +B ′A). Requiring that

(AB)′ = (A′B +AB ′) = 0 we obtain AB = const. Asymptotic

�atness implies that A(r)B(r) = 1 i.e B(r) = 1
A(r) .
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Calculations
Continued

Rθθ = 0 along with A′B +AB ′ = 0 results in the equation

1− (Ar)′ = 0 i.e. (Ar)′ = 1. Hence, A(r) = 1+ C
r for some

constant C .

Newtonian limit:

A(r) =−g00 = 1+
2Φ

c2

= 1− 2MG

c2r

where Φ =−GM
r . Hence, we have C =−2MG

c2r
.

Schwarzschild metric (1916):

ds2 =−
(
1− 2MG

c2r

)
c2dt2 +

(
1− 2MG

c2r

)−1
dr2 + r2dΩ2
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