What is Riemann Hypothesis?

Sungwook Lee
Department of Mathematics, University of Southern Mississippi

Physics Seminar, October 26, 2018

Outline

(1) Riemann Zeta-Function
(2) Riemann Hypothesis

Dirichlet Series

- Let us consider a Dirichlet series

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

where $s=\sigma+$ it is a complex variable.

- $\zeta(s)$ converges for all complex numbers s with $\sigma=\operatorname{Re}(s)>1$ and diverges when $\sigma=\operatorname{Re}(s) \leq 1$.
- Bernhard Riemann showed that $\zeta(s)$ can be continued analytically to the punctured complex plane $\mathbb{C} \backslash\{1\}$. The analytic continuation of $\zeta(s)$ is called the Riemann zeta-function.

Dirichlet Series

- Let us consider a Dirichlet series

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

where $s=\sigma+$ it is a complex variable.

- $\zeta(s)$ converges for all complex numbers s with $\sigma=\operatorname{Re}(s)>1$ and diverges when $\sigma=\operatorname{Re}(s) \leq 1$.
- Bernhard Riemann showed that $\zeta(s)$ can be continued analytically to the punctured complex plane $\mathbb{C} \backslash\{1\}$. The analytic continuation of $\zeta(s)$ is called the Riemann zeta-function.

Dirichlet Series

- Let us consider a Dirichlet series

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

where $s=\sigma+$ it is a complex variable.

- $\zeta(s)$ converges for all complex numbers s with $\sigma=\operatorname{Re}(s)>1$ and diverges when $\sigma=\operatorname{Re}(s) \leq 1$.
- Bernhard Riemann showed that $\zeta(s)$ can be continued analytically to the punctured complex plane $\mathbb{C} \backslash\{1\}$. The analytic continuation of $\zeta(s)$ is called the Riemann zeta-function.

Abel Summation

- Let $\sum_{n=0}^{\infty} a_{n}$ be an infinite series. Then the limit $\lim _{z \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} z^{n}$ is called Abel summation.
- Let us consider the infinite sequence $a_{n}=(-1)^{n}(n+1)$, $n=0,1,2, \cdots$. Then

for $|z|<1$. So $\lim _{z \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{4}$ ie.

Abel Summation

- Let $\sum_{n=0}^{\infty} a_{n}$ be an infinite series. Then the limit $\lim _{z \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} z^{n}$ is called Abel summation.
- Let us consider the infinite sequence $a_{n}=(-1)^{n}(n+1)$, $n=0,1,2, \cdots$. Then

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=1-2 z+3 z^{2}-4 z^{3}+\cdots=\frac{1}{(1+z)^{2}}
$$

for $|z|<1$. So $\lim _{z \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{4}$ i.e.

$$
1-2+3-4+\cdots=\frac{1}{4}
$$

$\zeta(-1)=1+2+3+4+\cdots$?

$$
\begin{aligned}
\zeta(s) & =1^{-s}+2^{-s}+3^{-s}+4^{-s}+5^{-s}+6^{-s}+\cdots \\
2 \cdot 2^{-s} \zeta(s) & =0+2 \cdot 2^{-s}+0+2 \cdot 4^{-2}+0+2 \cdot 6^{-s}+\cdots
\end{aligned}
$$

- Subtracting the second identity from the first results
- $-3 \zeta(-1)=1-2+3-4+\cdots=\frac{1}{4}$ and so

$\zeta(-1)=1+2+3+4+\cdots$?

$$
\begin{aligned}
\zeta(s) & =1^{-s}+2^{-s}+3^{-s}+4^{-s}+5^{-s}+6^{-s}+\cdots \\
2 \cdot 2^{-s} \zeta(s) & =0+2 \cdot 2^{-s}+0+2 \cdot 4^{-2}+0+2 \cdot 6^{-s}+\cdots
\end{aligned}
$$

- Subtracting the second identity from the first results

$$
\left(1-2^{1-s}\right) \zeta(s)=1^{-s}-2^{-s}+3^{-s}-4^{-s}+5^{-s}-6^{-s}+\cdots
$$

- $-3 \zeta(-1)=1-2+3-4+\cdots=\frac{1}{4}$ and so

$\zeta(-1)=1+2+3+4+\cdots$?

$$
\begin{aligned}
\zeta(s) & =1^{-s}+2^{-s}+3^{-s}+4^{-s}+5^{-s}+6^{-s}+\cdots \\
2 \cdot 2^{-s} \zeta(s) & =0+2 \cdot 2^{-s}+0+2 \cdot 4^{-2}+0+2 \cdot 6^{-s}+\cdots
\end{aligned}
$$

- Subtracting the second identity from the first results

$$
\left(1-2^{1-s}\right) \zeta(s)=1^{-s}-2^{-s}+3^{-s}-4^{-s}+5^{-s}-6^{-s}+\cdots
$$

- $-3 \zeta(-1)=1-2+3-4+\cdots=\frac{1}{4}$ and so

$$
\zeta(-1)=1+2+3+4+\cdots=-\frac{1}{12}
$$

$\zeta(-1)=1+2+3+4+\cdots$?

$$
\begin{aligned}
\zeta(s) & =1^{-s}+2^{-s}+3^{-s}+4^{-s}+5^{-s}+6^{-s}+\cdots \\
2 \cdot 2^{-s} \zeta(s) & =0+2 \cdot 2^{-s}+0+2 \cdot 4^{-2}+0+2 \cdot 6^{-s}+\cdots
\end{aligned}
$$

- Subtracting the second identity from the first results

$$
\left(1-2^{1-s}\right) \zeta(s)=1^{-s}-2^{-s}+3^{-s}-4^{-s}+5^{-s}-6^{-s}+\cdots
$$

- $-3 \zeta(-1)=1-2+3-4+\cdots=\frac{1}{4}$ and so

$$
\zeta(-1)=1+2+3+4+\cdots=-\frac{1}{12}
$$

- The analytic continuation of $\zeta(s)$ evaluated at $s=-1$ is $-\frac{1}{12}$.

Riemann's functional equation

- The Riemann zeta-function $\zeta(s)$ satisfies the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

- $\zeta(0)=\frac{1}{\pi} \lim _{s \rightarrow 0}\left(\frac{\pi s}{2}-\frac{\pi^{3} s^{3}}{48}+\cdots\right)\left(-\frac{1}{2}+\cdots\right)=-\frac{1}{2}$. Hence we obtain the sum $1+1+1+\cdots=-\frac{1}{2}$.
- For $s=-2,-4,-6, \cdots, \zeta(s)=0 . s=-2,-4,-6, \cdots$ are called the trivial zeros of $\zeta(s)$.
- There are also nontrivial zeros of $\zeta(s)$.

Riemann's functional equation

- The Riemann zeta-function $\zeta(s)$ satisfies the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

- $\zeta(0)=\frac{1}{\pi} \lim _{s \rightarrow 0}\left(\frac{\pi s}{2}-\frac{\pi^{3} s^{3}}{48}+\cdots\right)\left(-\frac{1}{2}+\cdots\right)=-\frac{1}{2}$. Hence we obtain the sum $1+1+1+\cdots=-\frac{1}{2}$.

called the trivial zeros of $\zeta(s)$.
- There are also nontrivial zeros of $\zeta(s)$.

Riemann's functional equation

- The Riemann zeta-function $\zeta(s)$ satisfies the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

- $\zeta(0)=\frac{1}{\pi} \lim _{s \rightarrow 0}\left(\frac{\pi s}{2}-\frac{\pi^{3} s^{3}}{48}+\cdots\right)\left(-\frac{1}{2}+\cdots\right)=-\frac{1}{2}$. Hence we obtain the sum $1+1+1+\cdots=-\frac{1}{2}$.
- For $s=-2,-4,-6, \cdots, \zeta(s)=0 . s=-2,-4,-6, \cdots$ are called the trivial zeros of $\zeta(s)$.
- There are also nontrivial zeros of $\zeta(s)$.

Riemann's functional equation

- The Riemann zeta-function $\zeta(s)$ satisfies the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

- $\zeta(0)=\frac{1}{\pi} \lim _{s \rightarrow 0}\left(\frac{\pi s}{2}-\frac{\pi^{3} s^{3}}{48}+\cdots\right)\left(-\frac{1}{2}+\cdots\right)=-\frac{1}{2}$. Hence we obtain the sum $1+1+1+\cdots=-\frac{1}{2}$.
- For $s=-2,-4,-6, \cdots, \zeta(s)=0 . s=-2,-4,-6, \cdots$ are called the trivial zeros of $\zeta(s)$.
- There are also nontrivial zeros of $\zeta(s)$.

Riemann Hypothesis

- There is a famous conjecture called the Riemann Hypothesis which asserts that
- The nontrivial zeros of $\zeta(s)$ all have the real part $\operatorname{Re}(s)=\frac{1}{2}$.
- This conjecture has not been resolved. It is a part of Hilbert's eighth problem along with the Golbach conjecture in the Hilbert's 23 unsolved problems and is also one of the Clay Mathematics Institute Millennium Prize Problems.
- Arguably the Riemann hypothesis is the greatest unsolved problem in mathematics. David Hilbert said "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?'

Riemann Hypothesis

- There is a famous conjecture called the Riemann Hypothesis which asserts that
- The nontrivial zeros of $\zeta(s)$ all have the real part $\operatorname{Re}(s)=\frac{1}{2}$.
- This conjecture has not been resolved. It is a part of Hilbert's eighth problem along with the Golbach conjecture in the Hilbert's 23 unsolved problems and is also one of the Clay Mathematics Institute Millennium Prize Problems.
- Arguably the Riemann hypothesis is the greatest unsolved problem in mathematics. David Hilbert said "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?'

Riemann Hypothesis

- There is a famous conjecture called the Riemann Hypothesis which asserts that
- The nontrivial zeros of $\zeta(s)$ all have the real part $\operatorname{Re}(s)=\frac{1}{2}$.
- This conjecture has not been resolved. It is a part of Hilbert's eighth problem along with the Golbach conjecture in the Hilbert's 23 unsolved problems and is also one of the Clay Mathematics Institute Millennium Prize Problems.
- Arguably the Riemann hypothesis is the greatest unsolved problem in mathematics. David Hilbert said "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?'

Riemann Hypothesis

- There is a famous conjecture called the Riemann Hypothesis which asserts that
- The nontrivial zeros of $\zeta(s)$ all have the real part $\operatorname{Re}(s)=\frac{1}{2}$.
- This conjecture has not been resolved. It is a part of Hilbert's eighth problem along with the Golbach conjecture in the Hilbert's 23 unsolved problems and is also one of the Clay Mathematics Institute Millennium Prize Problems.
- Arguably the Riemann hypothesis is the greatest unsolved problem in mathematics. David Hilbert said "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proven?'

Riemann Hypothesis

 Continued- There is computational evidence that supports the Riemann hypothesis. Notably, Alan Turing found 1,104 nontrivial zeros in 1953. The latest one I know of is 10 trillion $(10,000,000,000,000)$ nontrivial zeros found by X. Gourdon in 2004.

Hilbert-Pólya Conjecture

- Hilbert-Pólya conjecture: Zeros of the Riemann zeta-function $\zeta(s)$ are given by $\frac{1}{2}+i \gamma_{j}$ where the γ_{j} are the eigenvalues of a Hermitian Hamiltonian.
- Mathematician Hugh Montgometry discovered the pair correlation function

for zeros of the Riemann zeta-function. Physicist Freeman
Dyson recognized that it is also the pair correlation function for eigenvalues in a Gaussian unitary ensemble. Dyson also recognized that zeros of the Riemann zeta-function would form a quasicrystal if the Riemann hypothesis were true. He suggested trying to prove the Riemann hypothesis by classifying 1-dimensional quasicrystals.

Hilbert-Pólya Conjecture

- Hilbert-Pólya conjecture: Zeros of the Riemann zeta-function $\zeta(s)$ are given by $\frac{1}{2}+i \gamma_{j}$ where the γ_{j} are the eigenvalues of a Hermitian Hamiltonian.
- Mathematician Hugh Montgometry discovered the pair correlation function

$$
1-\frac{\sin ^{2}(\pi x)}{(\pi x)^{2}}
$$

for zeros of the Riemann zeta-function. Physicist Freeman Dyson recognized that it is also the pair correlation function for eigenvalues in a Gaussian unitary ensemble. Dyson also recognized that zeros of the Riemann zeta-function would form a quasicrystal if the Riemann hypothesis were true. He suggested trying to prove the Riemann hypothesis by classifying 1-dimensional quasicrystals.

Hilbert-Pólya Conjecture

Continued

- Montgomery-Odlyzko Law: The distribution of spacings between nontrivial zeros of the Riemann zeta function is statistically identical to the distribution of eigenvalue spaces in a Gaussian unitary ensemble.

Latest attempts

- Hamiltonian for the Zeros of the Riemann Zeta Function, Carl M. Bender, Dorje C. Brody, and Markus P. Müller, Phys. Rev. Lett. 118, 130201, 2017
- Sir Michael Atiyah claimed a proof of the Riemann hypothesis at Heidelberg Laureate Forum on 9/25/2018
- So has the Riemann hypothesis been proved? No not really, not even close.

Latest attempts

- Hamiltonian for the Zeros of the Riemann Zeta Function, Carl M. Bender, Dorje C. Brody, and Markus P. Müller, Phys. Rev. Lett. 118, 130201, 2017
- Sir Michael Atiyah claimed a proof of the Riemann hypothesis at Heidelberg Laureate Forum on 9/25/2018
- So has the Riemann hypothesis been proved? No not really, not even close.

Latest attempts

- Hamiltonian for the Zeros of the Riemann Zeta Function, Carl M. Bender, Dorje C. Brody, and Markus P. Müller, Phys. Rev. Lett. 118, 130201, 2017
- Sir Michael Atiyah claimed a proof of the Riemann hypothesis at Heidelberg Laureate Forum on 9/25/2018
- So has the Riemann hypothesis been proved? No not really, not even close.

