On \mathscr{P}-Hermitian Quantum Mechanics

Sungwook Lee

Department of Mathematics, University of Southern Mississippi
Physics Seminar, May 6, 2016

Outline

(1) 2-State \mathscr{P}-Hermitian Quantum System
(2) Continuum \mathscr{P}-Hermitian Quantum Mechanics

\mathscr{P}-Hermtian Matrices

- Let \mathbb{C}^{2} denote the complex 2-dimensional vector space

$$
\mathbb{C}^{2}=\left\{\binom{\alpha}{\beta}: \alpha, \beta \in \mathbb{C}\right\}
$$

- For $v, w \in \mathbb{C}^{2}$, define

$$
\langle v, w\rangle=\langle v| \mathscr{P}|w\rangle
$$

where $v^{\dagger}=\bar{v}^{t}$ and $\mathscr{P}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then \langle,$\rangle defines an$
indefinte Hermitian product on \mathbb{C}^{2}

- Defn. A 2×2 complex matrix H is called \mathscr{P}-Hermitan if

\mathscr{P}-Hermtian Matrices

- Let \mathbb{C}^{2} denote the complex 2-dimensional vector space

$$
\mathbb{C}^{2}=\left\{\binom{\alpha}{\beta}: \alpha, \beta \in \mathbb{C}\right\}
$$

- For $v, w \in \mathbb{C}^{2}$, define

$$
\begin{aligned}
\langle v, w\rangle & =\langle v| \mathscr{P}|w\rangle \\
& =v^{\dagger} \mathscr{P}_{w}
\end{aligned}
$$

where $v^{\dagger}=\bar{v}^{t}$ and $\mathscr{P}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then \langle,$\rangle defines an$ indefinte Hermitian product on \mathbb{C}^{2}.

- Defn. A 2×2 complex matrix H is called \mathscr{P}-Hermitan if

\mathscr{P}-Hermtian Matrices

- Let \mathbb{C}^{2} denote the complex 2-dimensional vector space

$$
\mathbb{C}^{2}=\left\{\binom{\alpha}{\beta}: \alpha, \beta \in \mathbb{C}\right\}
$$

- For $v, w \in \mathbb{C}^{2}$, define

$$
\begin{aligned}
\langle v, w\rangle & =\langle v| \mathscr{P}|w\rangle \\
& =v^{\dagger} \mathscr{P}_{w}
\end{aligned}
$$

where $v^{\dagger}=\bar{v}^{t}$ and $\mathscr{P}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then \langle,$\rangle defines an$ indefinte Hermitian product on \mathbb{C}^{2}.

- Defn. A 2×2 complex matrix H is called \mathscr{P}-Hermitan if

$$
\mathscr{P} H^{\dagger} \mathscr{P}-1=H
$$

\mathscr{P}-Hermitan Matrices

Continued

- If H is \mathscr{P}-Hermitian, H can be written as

$$
H=\left(\begin{array}{cc}
a & b \\
-\bar{b} & d
\end{array}\right)
$$

where a and d are real numbers.

Time Evolution

- Let $U(t)=\exp \left(-\frac{i}{\hbar} H t\right)$. Then $|\psi(t)\rangle=U(t)|\psi(0)\rangle$ is a solution of the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

- $U(t)$ is called the time-evolution operator.
- $U(t)$ is said to be unitary if it is an isometry i.e $\langle\psi(t), \psi(t)\rangle=\langle\psi(0), \psi(0)\rangle$ for all t
- Thm. $U(t)$ is unitary if and only if

Time Evolution

- Let $U(t)=\exp \left(-\frac{i}{\hbar} H t\right)$. Then $|\psi(t)\rangle=U(t)|\psi(0)\rangle$ is a solution of the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

- $U(t)$ is called the time-evolution operator.
- $U(t)$ is said to be unitary if it is an isometry i.e $\langle\psi(t), \psi(t)\rangle=\langle\psi(0), \psi(0)\rangle$ for all t.
- Thm. $U(t)$ is unitary if and only if

Time Evolution

- Let $U(t)=\exp \left(-\frac{i}{\hbar} H t\right)$. Then $|\psi(t)\rangle=U(t)|\psi(0)\rangle$ is a solution of the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

- $U(t)$ is called the time-evolution operator.
- $U(t)$ is said to be unitary if it is an isometry i.e. $\langle\psi(t), \psi(t)\rangle=\langle\psi(0), \psi(0)\rangle$ for all t.
- Thm. $U(t)$ is unitary if and only if

Time Evolution

- Let $U(t)=\exp \left(-\frac{i}{\hbar} H t\right)$. Then $|\psi(t)\rangle=U(t)|\psi(0)\rangle$ is a solution of the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

- $U(t)$ is called the time-evolution operator.
- $U(t)$ is said to be unitary if it is an isometry i.e. $\langle\psi(t), \psi(t)\rangle=\langle\psi(0), \psi(0)\rangle$ for all t.
- Thm. $U(t)$ is unitary if and only if

$$
U(t)^{\dagger} \mathscr{P} U(t)=\mathscr{P}
$$

Time Evolution

Continued

- Thm. $U(t)$ is unitary if and only if H is \mathscr{P}-Hermition.
- The set of unitary transformations forms a Lie subgroup $U(1,1)$ of $S L(2, \mathbb{C}) . U(1,1)$ is called the pseudo unitary group.
- If \mathbb{C}^{2} is considered as a 2-dim indefinite Hermitian manifold the gauge group of the frame bundle $L \mathbb{C}^{2}$ is $U(1,1)$.
- A 2×2 complex matrix H is \mathscr{P}-Hermitian if and only if -iH $\in u(1,1)$, the Lie algebra of $U(1,1)$

Time Evolution

Continued

- Thm. $U(t)$ is unitary if and only if H is \mathscr{P}-Hermition.
- The set of unitary transformations forms a Lie subgroup $U(1,1)$ of $S L(2, \mathbb{C}) . U(1,1)$ is called the pseudo unitary group.
- If \mathbb{C}^{2} is considered as a 2-dim indefinite Hermitian manifold the gauge group of the frame bundle $L \mathbb{C}^{2}$ is $U(1,1)$
- A 2×2 complex matrix H is $\mathscr{P}_{\text {-Hermitian if }}$ and only if $-i H \in u(1,1)$, the Lie algebra of $U(1,1)$

Time Evolution

Continued

- Thm. $U(t)$ is unitary if and only if H is \mathscr{P}-Hermition.
- The set of unitary transformations forms a Lie subgroup $U(1,1)$ of $S L(2, \mathbb{C}) . U(1,1)$ is called the pseudo unitary group.
- If \mathbb{C}^{2} is considered as a 2-dim indefinite Hermitian manifold, the gauge group of the frame bundle $L \mathbb{C}^{2}$ is $U(1,1)$.
- A 2×2 complex matrix H is \mathscr{P}-Hermitian if and only if $-i H \in u(1,1)$, the Lie algebra of $U(1,1)$

Time Evolution

Continued

- Thm. $U(t)$ is unitary if and only if H is \mathscr{P}-Hermition.
- The set of unitary transformations forms a Lie subgroup $U(1,1)$ of $S L(2, \mathbb{C}) . U(1,1)$ is called the pseudo unitary group.
- If \mathbb{C}^{2} is considered as a 2-dim indefinite Hermitian manifold, the gauge group of the frame bundle $L \mathbb{C}^{2}$ is $U(1,1)$.
- A 2×2 complex matrix H is \mathscr{P}-Hermitian if and only if -iH $\in u(1,1)$, the Lie algebra of $U(1,1)$.

Time Evolution

Continued

- If \mathbb{C}^{2} is orientable, the gauge group of $L \mathbb{C}^{2}$ can be reduced to $S U(1,1)$, the special pseudo unitary group. The Lie algebra $s u(1,1)$ of $S U(1,1)$ is the set of elements in $u(1,1)$ that are trace-free. With the additional condition $\operatorname{tr}(H)=0$, a \mathscr{P}-Hermitian hamiltonian H can be written as

$$
H=\left(\begin{array}{cc}
a & b \\
-\bar{b} & -a
\end{array}\right)
$$

where a is a real number.

$|\psi|^{2}$ is not a probability!

- Since $|\psi|^{2}$ could be positive, negative, or zero, $|\psi|^{2}$ cannot be interpreted as a probability.
- Instead $|\psi|^{2}$ may be considered as an internal symmetry and that the time evolution operator $U(t)$ is required to preserve the internal symmetry analogously to Lorentz transformations.
- This bothered physicists so they looked for a workaround. And there was one

$|\psi|^{2}$ is not a probability!

- Since $|\psi|^{2}$ could be positive, negative, or zero, $|\psi|^{2}$ cannot be interpreted as a probability.
- Instead $|\psi|^{2}$ may be considered as an internal symmetry and that the time evolution operator $U(t)$ is required to preserve the internal symmetry analogously to Lorentz transformations.
- This bothered physicists so they looked for a workaround. And there was one.

$|\psi|^{2}$ is not a probability!

- Since $|\psi|^{2}$ could be positive, negative, or zero, $|\psi|^{2}$ cannot be interpreted as a probability.
- Instead $|\psi|^{2}$ may be considered as an internal symmetry and that the time evolution operator $U(t)$ is required to preserve the internal symmetry analogously to Lorentz transformations.
- This bothered physicists so they looked for a workaround. And there was one.

$|\psi|^{2}$ is not a probability!

Continued

- Define \langle,\rangle_{+}by

$$
\begin{aligned}
\langle v, w\rangle_{+} & =\langle v, \mathscr{P} w\rangle \\
& =\langle v \mid w\rangle \\
& =v^{\dagger} w
\end{aligned}
$$

Then \langle,\rangle_{+}defines a positive definte Hermitan product on \mathbb{C}^{2}.

- Physicists considered $|\psi|_{+}^{2}=\langle\psi, \psi\rangle_{+}$as a probability.
- However $|\psi|_{+}^{2}$ cannot be a probability as it violates unitarity!

$|\psi|^{2}$ is not a probability!

Continued

- Define \langle,\rangle_{+}by

$$
\begin{aligned}
\langle v, w\rangle_{+} & =\langle v, \mathscr{P} w\rangle \\
& =\langle v \mid w\rangle \\
& =v^{\dagger} w
\end{aligned}
$$

Then \langle,\rangle_{+}defines a positive definte Hermitan product on \mathbb{C}^{2}.

- Physicists considered $|\psi|_{+}^{2}=\langle\psi, \psi\rangle_{+}$as a probability.
- However $|\psi|_{+}^{2}$ cannot be a probability as it violates unitarity!

$|\psi|^{2}$ is not a probability!

Continued

- Define \langle,\rangle_{+}by

$$
\begin{aligned}
\langle v, w\rangle_{+} & =\langle v, \mathscr{P} w\rangle \\
& =\langle v \mid w\rangle \\
& =v^{\dagger} w
\end{aligned}
$$

Then \langle,\rangle_{+}defines a positive definte Hermitan product on \mathbb{C}^{2}.

- Physicists considered $|\psi|_{+}^{2}=\langle\psi, \psi\rangle_{+}$as a probability.
- However $|\psi|_{+}^{2}$ cannot be a probability as it violates unitarity!

Example

- Let $\left|\psi_{1}\right\rangle=\binom{1}{0}$ and $\left|\psi_{2}\right\rangle=\binom{0}{1}$. Consider time evolution of $|\psi(t)\rangle=\omega_{1}(t)\left|\psi_{1}\right\rangle+\omega_{2}(t)\left|\psi_{2}\right\rangle$ with
$H=\left(\begin{array}{cc}3 & -1+i \\ 1+i & -3\end{array}\right)$.
- $|\psi(t)|^{2}$ is preserved as expected.
- $|\psi(t)|_{+}^{2}$ is not preserved however.

Example

- Let $\left|\psi_{1}\right\rangle=\binom{1}{0}$ and $\left|\psi_{2}\right\rangle=\binom{0}{1}$. Consider time evolution of $|\psi(t)\rangle=\omega_{1}(t)\left|\psi_{1}\right\rangle+\omega_{2}(t)\left|\psi_{2}\right\rangle$ with
$H=\left(\begin{array}{cc}3 & -1+i \\ 1+i & -3\end{array}\right)$.
- $|\psi(t)|^{2}$ is preserved as expected.
- $|\psi(t)|_{+}^{2}$ is not preserved however.

Example

- Let $\left|\psi_{1}\right\rangle=\binom{1}{0}$ and $\left|\psi_{2}\right\rangle=\binom{0}{1}$. Consider time evolution of $|\psi(t)\rangle=\omega_{1}(t)\left|\psi_{1}\right\rangle+\omega_{2}(t)\left|\psi_{2}\right\rangle$ with
$H=\left(\begin{array}{cc}3 & -1+i \\ 1+i & -3\end{array}\right)$.
- $|\psi(t)|^{2}$ is preserved as expected.
- $|\psi(t)|_{+}^{2}$ is not preserved however.

Example

Figure : $|\psi(t)|^{2}$

Example

Figure : $|\psi(t)|_{+}^{2}$

The probability of the system being in the state $\left|\psi_{i}\right\rangle$

- The probability of the system being in the state $\left|\psi_{i}\right\rangle$ can be defined in the same way it is defined in the standard quantum mechanics

$$
\operatorname{Pr}\left(\left|\psi_{i}\right\rangle\right)=\frac{\left|\omega_{i}\right|^{2}}{\left|\omega_{1}\right|^{2}+\left|\omega_{2}\right|^{2}}=\frac{\left|\left\langle\psi_{i}, \psi\right\rangle\right|^{2}}{\sum_{j=1}^{2}\left|\left\langle\psi_{j}, \psi\right\rangle\right|^{2}}
$$

Example

Figure: $\operatorname{Pr}\left(\left|\psi_{1}\right\rangle\right)$

Example

Figure: $\operatorname{Pr}\left(\left|\psi_{2}\right\rangle\right)$

Spin-Flip

The Rabi Experiment

- Pauli equation in \mathscr{P}-Hermitian quantum mechanics

$$
\begin{aligned}
i \hbar \frac{d|\psi(t)\rangle}{d t} & =-B \cdot M|\psi(t)\rangle \\
& =-\mu B \cdot \sigma|\psi(t)\rangle
\end{aligned}
$$

where $B=\left(B_{0} \cos \omega_{0} t, B_{0} \sin \omega_{0} t, B_{z}\right)$,
$|\psi(t)\rangle=a(t) e^{-i \omega t}\left|\psi_{1}\right\rangle+b(t) e^{i \omega t}\left|\psi_{2}\right\rangle\left(\omega=-\frac{\mu B_{z}}{\hbar}\right.$ is the
Larmor frequency), and $\sigma_{i}, i=1,2,3$ are the Pauli matrices (in \mathscr{P}-Hermtian quantum mechanics) given by

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Spin-Flip

Continued

Figure: $|\psi(t)|^{2}=|a(t)|^{2}-|b(t)|^{2}$

Spin-Flip

Continued

Figure : $\operatorname{Pr}\left(\left|\psi_{1}\right\rangle\right)$

Spin-Flip

Continued

Figure : $\operatorname{Pr}\left(\left|\psi_{2}\right\rangle\right)$

Symmetry of \mathscr{D}-Hermitian Quantum Mechanics

- Recall that the set of unitary transformations is the Lie group $S U(1,1) . S U(1,1)$ is the universal cover of the Lorentz group $S O^{+}(2,1)$.
- $\mathrm{SO}^{+}(2,1)$ is the symmetry group of Minkowski space \mathbb{R}^{2+1}
- No rotational symmetry $S O(3)$ in \mathscr{P}-Hermitian quantum mechanics!
- The universal cover $\rho: S U(1,1) \longrightarrow$ SO $^{+}(2,1)$ is a double cover and $\operatorname{ker} \rho=\mathbb{Z}_{2}=\{ \pm /\}$, so

Mathematically, this defines spin in \mathscr{P}-Hermtian quantum

Symmetry of \mathscr{D}-Hermitian Quantum Mechanics

- Recall that the set of unitary transformations is the Lie group $S U(1,1) . S U(1,1)$ is the universal cover of the Lorentz group $S O^{+}(2,1)$.
- $S O^{+}(2,1)$ is the symmetry group of Minkowski space \mathbb{R}^{2+1}.
- No rotational symmetry $S O(3)$ in \mathscr{P}-Hermitian quantum mechanics!
- The universal cover $\rho: S U(1,1) \longrightarrow S O^{+}(2,1)$ is a double cover and $\operatorname{ker} \rho=\mathbb{Z}_{2}=\{ \pm /\}$, so

Mathematically, this defines spin in \mathscr{P}-Hermtian quantum

Symmetry of \mathscr{D}－Hermitian Quantum Mechanics

－Recall that the set of unitary transformations is the Lie group $S U(1,1) . S U(1,1)$ is the universal cover of the Lorentz group $S O^{+}(2,1)$ ．
－$S O^{+}(2,1)$ is the symmetry group of Minkowski space \mathbb{R}^{2+1} ．
－No rotational symmetry $S O(3)$ in \mathscr{P}－Hermitian quantum mechanics！
－The universal cover $\rho: S U(1,1) \longrightarrow S O^{+}(2,1)$ is a double cover and $\operatorname{ker} \rho=\mathbb{Z}_{2}=\{ \pm /\}$ ，so

$$
\operatorname{SU}(1,1) / \mathbb{Z}_{2}=S O^{+}(2,1)
$$

Symmetry of \mathscr{D}-Hermitian Quantum Mechanics

- Recall that the set of unitary transformations is the Lie group $S U(1,1) . S U(1,1)$ is the universal cover of the Lorentz group $S O^{+}(2,1)$.
- $S O^{+}(2,1)$ is the symmetry group of Minkowski space \mathbb{R}^{2+1}.
- No rotational symmetry $S O(3)$ in \mathscr{P}-Hermitian quantum mechanics!
- The universal cover $\rho: S U(1,1) \longrightarrow S O^{+}(2,1)$ is a double cover and $\operatorname{ker} \rho=\mathbb{Z}_{2}=\{ \pm /\}$, so

$$
S U(1,1) / \mathbb{Z}_{2}=S O^{+}(2,1)
$$

Mathematically, this defines spin in \mathscr{P}-Hermtian quantum mechanics.

Quantum Angular Momentum in \mathscr{P}-Hermitian Quantum Mechanics

- The symmetry of \mathscr{P}-Hermitian quantum mechanics indicates that quantum angular momentum would be different from that of the standard quantum mechanics.
- The quantum angular momentum can be derived from the symmetry as

Quantum Angular Momentum in \mathscr{P}-Hermitian Quantum Mechanics

- The symmetry of \mathscr{P}-Hermitian quantum mechanics indicates that quantum angular momentum would be different from that of the standard quantum mechanics.
- The quantum angular momentum can be derived from the symmetry as

$$
\begin{aligned}
& L_{t}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \\
& L_{x}=i \hbar\left(y \frac{\partial}{\partial t}+t \frac{\partial}{\partial y}\right) \\
& L_{y}=i \hbar\left(t \frac{\partial}{\partial x}+x \frac{\partial}{\partial t}\right)
\end{aligned}
$$

Indefinte Hermitian Product

- Let \mathscr{P} be the parity operator i.e. $\mathscr{P} \psi(x, t)=\psi(-x, t)$.
- Define \langle,$\rangle on the space of state vectors by$

$$
=\int_{-\infty}^{\infty} \overline{\varphi(x)} \psi(-x) d x
$$

Then \langle,$\rangle is an indefinite Hermitian product on the space of$ state vectors.

Indefinte Hermitian Product

- Let \mathscr{P} be the parity operator i.e. $\mathscr{P} \psi(x, t)=\psi(-x, t)$.
- Define \langle,$\rangle on the space of state vectors by$

$$
\begin{aligned}
\langle\varphi, \psi\rangle & =\langle\varphi| \mathscr{P}|\psi\rangle \\
& =\int_{-\infty}^{\infty} \overline{\varphi(x)} \psi(-x) d x
\end{aligned}
$$

Then \langle,$\rangle is an indefinite Hermitian product on the space of$ state vectors.

Adjoint Operators and Self-Adjointness

- Let A be a linear operator on the space of state vectors. Define its adjoint to be the operator A^{*} satisfying

$$
\langle\varphi, A \psi\rangle=\left\langle A^{*} \varphi, \psi\right\rangle
$$

- Equivalently

- A linear operator A is said to be self-adjoint or \mathscr{P}-Hermitian if $A=A^{*}$ or equivalently

Adjoint Operators and Self-Adjointness

- Let A be a linear operator on the space of state vectors. Define its adjoint to be the operator A^{*} satisfying

$$
\langle\varphi, A \psi\rangle=\left\langle A^{*} \varphi, \psi\right\rangle
$$

- Equivalently

$$
\int_{-\infty}^{\infty} \bar{\varphi} \mathscr{P}(A \psi) d x=\int_{-\infty}^{\infty} \overline{A^{*} \varphi} \mathscr{P} \psi
$$

- A linear operator A is said to be self-adjoint or \mathscr{P}-Hermitian if $A=A^{*}$ or equivalently

Adjoint Operators and Self-Adjointness

- Let A be a linear operator on the space of state vectors. Define its adjoint to be the operator A^{*} satisfying

$$
\langle\varphi, A \psi\rangle=\left\langle A^{*} \varphi, \psi\right\rangle
$$

- Equivalently

$$
\int_{-\infty}^{\infty} \bar{\varphi} \mathscr{P}(A \psi) d x=\int_{-\infty}^{\infty} \overline{A^{*} \varphi} \mathscr{P} \psi
$$

- A linear operator A is said to be self-adjoint or \mathscr{P}-Hermitian if $A=A^{*}$ or equivalently

$$
\langle A \varphi, \psi\rangle=\langle\varphi, A \psi\rangle
$$

Reality of eigenvalues of \mathscr{P}-Hermitian operators

- It is important to require that the eigenvalues (energies) of Hamiltonian operators are real.
- Thm. Let L be a \mathscr{P}-Hermitian operator. Let λ be a nonreal complex eigenvalue of L. Then its associated eigenvector has vanishing squared norm.
- Equivalently, the eigenvalues of a \mathscr{P}-Hermitian operator are real provided their associated eigenvectors have nonvanishing squared norm.

Reality of eigenvalues of \mathscr{P}-Hermitian operators

- It is important to require that the eigenvalues (energies) of Hamiltonian operators are real.
- Thm. Let L be a \mathscr{P}-Hermitian operator. Let λ be a nonreal complex eigenvalue of L. Then its associated eigenvector has vanishing squared norm.
- Equivalently, the eigenvalues of a \mathscr{P}-Hermitian operator are real provided their associated eigenvectors have nonvanishing squared norm

Reality of eigenvalues of \mathscr{P}-Hermitian operators

- It is important to require that the eigenvalues (energies) of Hamiltonian operators are real.
- Thm. Let L be a \mathscr{P}-Hermitian operator. Let λ be a nonreal complex eigenvalue of L. Then its associated eigenvector has vanishing squared norm.
- Equivalently, the eigenvalues of a \mathscr{P}-Hermitian operator are real provided their associated eigenvectors have nonvanishing squared norm.

Time Evolution Operator and \mathscr{P}-Hermitian Hamiltonian

- Let H be a time independent Hamiltonian. Then the time evolution operator $U(x, t)$ is given by

$$
U(x, t)=\exp \left(-\frac{i}{\hbar} H t\right)
$$

- Thm. $U(x, t)$ is unitary if and only if $U^{*}=U^{-1}$. Using this theorem one can prove that:
- Thm. $U(x, t)$ is unitary if and only if H is \mathscr{P}-Hermitian i.e. $H^{*}=H$.

Time Evolution Operator and \mathscr{P}-Hermitian Hamiltonian

- Let H be a time independent Hamiltonian. Then the time evolution operator $U(x, t)$ is given by

$$
U(x, t)=\exp \left(-\frac{i}{\hbar} H t\right)
$$

- Thm. $U(x, t)$ is unitary if and only if $U^{*}=U^{-1}$. Using this theorem one can prove that:
- Thm. $U(x, t)$ is unitary if and only if H is \mathscr{P}-Hermitian i.e. $H^{*}=H$.

Time Evolution Operator and \mathscr{P}-Hermitian Hamiltonian

- Let H be a time independent Hamiltonian. Then the time evolution operator $U(x, t)$ is given by

$$
U(x, t)=\exp \left(-\frac{i}{\hbar} H t\right)
$$

- Thm. $U(x, t)$ is unitary if and only if $U^{*}=U^{-1}$. Using this theorem one can prove that:
- Thm. $U(x, t)$ is unitary if and only if H is \mathscr{P}-Hermitian i.e. $H^{*}=H$.

\mathscr{P}-Hermiticity and $\mathscr{P} \mathscr{T}$-Symmetry

- Defn. Let L be a time independent operator. L is said to be $\mathscr{P} \mathscr{T}$-symmetric if $\mathscr{P} \mathscr{T} L(x)=\overline{L(-x)}=L(x)$.
- Thm. If $V(x)$ is a potential energy operator which acts on $|\psi(x)\rangle$ by multiplication, then $V(x)$ is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.
- Cor. Hamiltonian H of the form

is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.

\mathscr{P}-Hermiticity and $\mathscr{P} \mathscr{T}$-Symmetry

- Defn. Let L be a time independent operator. L is said to be $\mathscr{P} \mathscr{T}$-symmetric if $\mathscr{P} \mathscr{T} L(x)=\overline{L(-x)}=L(x)$.
- Thm. If $V(x)$ is a potential energy operator which acts on $|\psi(x)\rangle$ by multiplication, then $V(x)$ is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.
- Cor. Hamiltonian H of the form

is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.

\mathscr{P}-Hermiticity and $\mathscr{P} \mathscr{T}$-Symmetry

- Defn. Let L be a time independent operator. L is said to be $\mathscr{P} \mathscr{T}$-symmetric if $\mathscr{P} \mathscr{T} L(x)=\overline{L(-x)}=L(x)$.
- Thm. If $V(x)$ is a potential energy operator which acts on $|\psi(x)\rangle$ by multiplication, then $V(x)$ is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.
- Cor. Hamiltonian H of the form

$$
H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

is \mathscr{P}-Hermitian if and only if it is $\mathscr{P} \mathscr{T}$-symmetric.

A New Class of Hamiltonians

- In mathematics, any complex-valued function $f(x)$ satisfying

$$
\overline{f(-x)}=f(x)
$$

is called a Hermitian function. It can be shown that the real and imaginary parts of a Hermitian function is an even and an odd functions respectively.

- \mathscr{P}-Hermitian potential operators may be complex while standard Hermitian potential operators must be real.
- Examples of \mathscr{P}-Hermtian potential operators $V(x)$ includes

A New Class of Hamiltonians

－In mathematics，any complex－valued function $f(x)$ satisfying

$$
\overline{f(-x)}=f(x)
$$

is called a Hermitian function．It can be shown that the real and imaginary parts of a Hermitian function is an even and an odd functions respectively．
－ \mathscr{P}－Hermitian potential operators may be complex while standard Hermitian potential operators must be real．
－Examples of \mathscr{P}－Hermtian potential operators $V(x)$ includes

A New Class of Hamiltonians

- In mathematics, any complex-valued function $f(x)$ satisfying

$$
\overline{f(-x)}=f(x)
$$

is called a Hermitian function. It can be shown that the real and imaginary parts of a Hermitian function is an even and an odd functions respectively.

- \mathscr{P}-Hermitian potential operators may be complex while standard Hermitian potential operators must be real.
- Examples of \mathscr{P}-Hermtian potential operators $V(x)$ includes

$$
i x^{3}, i x^{5}, x^{2}+i x^{3}, e^{i x}=\cos x+i \sin x
$$

etc.

Time evolution with positive definite Hermitian product

- $\mathscr{P} \mathscr{T}$-symmetric quantum physicists insist that they should use positive definite Hermitian product to study $\mathscr{P} \mathscr{T}$-symmetric quantum mechanics in order to interpret $|\psi|^{2}$ as a probability. However this leads to a serious problem for them.
- Thm. Let H be a \mathscr{P}-Hermitian hamiltonian of the form $H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$. Then the time evolution operator $U(x, t)$ is unitary with respect to positive definite Hermitian product if and only if $V(x)$ is real.
- This means that while they have real eigenvalues, complex potentials are no longer physical if one insists using positive definite Hermitian product.

Time evolution with positive definite Hermitian product

- $\mathscr{P} \mathscr{T}$-symmetric quantum physicists insist that they should use positive definite Hermitian product to study $\mathscr{P} \mathscr{T}$-symmetric quantum mechanics in order to interpret $|\psi|^{2}$ as a probability. However this leads to a serious problem for them.
- Thm. Let H be a \mathscr{P}-Hermitian hamiltonian of the form $H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$. Then the time evolution operator $U(x, t)$ is unitary with respect to positive definite Hermitian product if and only if $V(x)$ is real.
- This means that while they have real eigenvalues, complex potentials are no longer physical if one insists using positive definite Hermitian product.

Time evolution with positive definite Hermitian product

- $\mathscr{P} \mathscr{T}$-symmetric quantum physicists insist that they should use positive definite Hermitian product to study $\mathscr{P} \mathscr{T}$-symmetric quantum mechanics in order to interpret $|\psi|^{2}$ as a probability. However this leads to a serious problem for them.
- Thm. Let H be a \mathscr{P}-Hermitian hamiltonian of the form $H=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)$. Then the time evolution operator $U(x, t)$ is unitary with respect to positive definite Hermitian product if and only if $V(x)$ is real.
- This means that while they have real eigenvalues, complex potentials are no longer physical if one insists using positive definite Hermitian product.

A possible connection to Riemann Hypothesis?

- Riemann Hypothesis: All nontrivial zeros of the Riemann zeta-function

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

, where $0<\mathfrak{R}(s)<1$, lies on the critical line $\frac{1}{2}+i t$.

- Hilbert-Pólya Conjecture: The imaginary part of nontrivial zeros $\frac{1}{2}+$ it of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a Hermitian Hamiltonian H of a particle of mass m that is moving under the influence of a potential $V(x)$
- The Hilbert-Pólya Conjecture can be restated in terms of \mathscr{P}-Hermitian hamiltonians.
The nontrivial zeros of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a \mathscr{P}-Hermitian potenial $V(x)$ of the form $V(x)=\frac{1}{2}+$ if (x) where $f(x)$ is an odd function

A possible connection to Riemann Hypothesis?

- Riemann Hypothesis: All nontrivial zeros of the Riemann zeta-function

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

, where $0<\mathfrak{R}(s)<1$, lies on the critical line $\frac{1}{2}+i t$.

- Hilbert-Pólya Conjecture: The imaginary part of nontrivial zeros $\frac{1}{2}+$ it of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a Hermitian Hamiltonian H of a particle of mass m that is moving under the influence of a potential $V(x)$.
- The Hilbert-Pólya Conjecture can be restated in terms of \mathscr{P}-Hermitian hamiltonians.
The nontrivial zeros of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a \mathscr{P}-Hermitian potenial $V(x)$ of the form $V(x)=\frac{1}{2}+$ if (x) where $f(x)$ is an odd function.

A possible connection to Riemann Hypothesis?

- Riemann Hypothesis: All nontrivial zeros of the Riemann zeta-function

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

, where $0<\mathfrak{R}(s)<1$, lies on the critical line $\frac{1}{2}+i t$.

- Hilbert-Pólya Conjecture: The imaginary part of nontrivial zeros $\frac{1}{2}+$ it of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a Hermitian Hamiltonian H of a particle of mass m that is moving under the influence of a potential $V(x)$.
- The Hilbert-Pólya Conjecture can be restated in terms of \mathscr{P}-Hermitian hamiltonians.
The nontrivial zeros of the Riemann zeta function $\zeta(s)$ are the eigenvalues of a \mathscr{P}-Hermitian potenial $V(x)$ of the form $V(x)=\frac{1}{2}+$ if (x) where $f(x)$ is an odd function.

A Quote

"The universe is not only stranger than we imagine, it is stranger than we can imagine."
J. B. S. Haldane (5 November 1892-1 December 1964), a British biologist and a commie.

Questions?

Any Questions?

