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P-Hermtian Matrices

Let C2 denote the complex 2-dimensional vector space

C2 =

{(
α

β

)
: α,β ∈ C

}
For v ,w ∈ C2, define

〈v ,w〉= 〈v |P|w〉
= v†Pw

where v† = v̄ t and P =

(
1 0
0 −1

)
. Then 〈 , 〉 defines an

indefinte Hermitian product on C2.

Defn. A 2×2 complex matrix H is called P-Hermitan if

PH†P−1 = H



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

P-Hermtian Matrices

Let C2 denote the complex 2-dimensional vector space

C2 =

{(
α

β

)
: α,β ∈ C

}
For v ,w ∈ C2, define

〈v ,w〉= 〈v |P|w〉
= v†Pw

where v† = v̄ t and P =

(
1 0
0 −1

)
. Then 〈 , 〉 defines an

indefinte Hermitian product on C2.

Defn. A 2×2 complex matrix H is called P-Hermitan if

PH†P−1 = H



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

P-Hermtian Matrices

Let C2 denote the complex 2-dimensional vector space

C2 =

{(
α

β

)
: α,β ∈ C

}
For v ,w ∈ C2, define

〈v ,w〉= 〈v |P|w〉
= v†Pw

where v† = v̄ t and P =

(
1 0
0 −1

)
. Then 〈 , 〉 defines an

indefinte Hermitian product on C2.

Defn. A 2×2 complex matrix H is called P-Hermitan if

PH†P−1 = H



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

P-Hermitan Matrices
Continued

If H is P-Hermitian, H can be written as

H =

(
a b
−b̄ d

)
where a and d are real numbers.
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Time Evolution

Let U(t) = exp
(
− i

h̄Ht
)
. Then |ψ(t)〉= U(t)|ψ(0)〉 is a

solution of the Schrödinger equation

i h̄
d |ψ(t)〉

dt
= H|ψ(t)〉

U(t) is called the time-evolution operator.

U(t) is said to be unitary if it is an isometry i.e.
〈ψ(t),ψ(t)〉= 〈ψ(0),ψ(0)〉 for all t.

Thm. U(t) is unitary if and only if

U(t)†PU(t) = P



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Time Evolution

Let U(t) = exp
(
− i

h̄Ht
)
. Then |ψ(t)〉= U(t)|ψ(0)〉 is a

solution of the Schrödinger equation

i h̄
d |ψ(t)〉

dt
= H|ψ(t)〉

U(t) is called the time-evolution operator.

U(t) is said to be unitary if it is an isometry i.e.
〈ψ(t),ψ(t)〉= 〈ψ(0),ψ(0)〉 for all t.

Thm. U(t) is unitary if and only if

U(t)†PU(t) = P



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Time Evolution

Let U(t) = exp
(
− i

h̄Ht
)
. Then |ψ(t)〉= U(t)|ψ(0)〉 is a

solution of the Schrödinger equation

i h̄
d |ψ(t)〉

dt
= H|ψ(t)〉

U(t) is called the time-evolution operator.

U(t) is said to be unitary if it is an isometry i.e.
〈ψ(t),ψ(t)〉= 〈ψ(0),ψ(0)〉 for all t.

Thm. U(t) is unitary if and only if

U(t)†PU(t) = P



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Time Evolution

Let U(t) = exp
(
− i

h̄Ht
)
. Then |ψ(t)〉= U(t)|ψ(0)〉 is a

solution of the Schrödinger equation

i h̄
d |ψ(t)〉

dt
= H|ψ(t)〉

U(t) is called the time-evolution operator.

U(t) is said to be unitary if it is an isometry i.e.
〈ψ(t),ψ(t)〉= 〈ψ(0),ψ(0)〉 for all t.

Thm. U(t) is unitary if and only if

U(t)†PU(t) = P



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Time Evolution
Continued

Thm. U(t) is unitary if and only if H is P-Hermition.

The set of unitary transformations forms a Lie subgroup
U(1,1) of SL(2,C). U(1,1) is called the pseudo unitary group.

If C2 is considered as a 2-dim indefinite Hermitian manifold,
the gauge group of the frame bundle LC2 is U(1,1).

A 2×2 complex matrix H is P-Hermitian if and only if
−iH ∈ u(1,1), the Lie algebra of U(1,1).
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Time Evolution
Continued

If C2 is orientable, the gauge group of LC2can be reduced to
SU(1,1), the special pseudo unitary group. The Lie algebra
su(1,1) of SU(1,1) is the set of elements in u(1,1) that are
trace-free. With the additional condition tr(H) = 0, a
P-Hermitian hamiltonian H can be written as

H =

(
a b
−b̄ −a

)
where a is a real number.
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|ψ|2 is not a probability!

Since |ψ|2 could be positive, negative, or zero, |ψ|2 cannot be
interpreted as a probability.

Instead |ψ|2may be considered as an internal symmetry and
that the time evolution operator U(t) is required to preserve
the internal symmetry analogously to Lorentz transformations.

This bothered physicists so they looked for a workaround. And
there was one.
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|ψ|2 is not a probability!
Continued

Define 〈 , 〉+ by

〈v ,w〉+ = 〈v ,Pw〉
= 〈v |w〉
= v†w

Then 〈 , 〉+defines a positive definte Hermitan product on C2.

Physicists considered |ψ|2+ = 〈ψ,ψ〉+ as a probability.

However |ψ|2+ cannot be a probability as it violates unitarity!
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Example

Let |ψ1〉=

(
1
0

)
and |ψ2〉=

(
0
1

)
. Consider time evolution

of |ψ(t)〉= ω1(t)|ψ1〉+ ω2(t)|ψ2〉 with

H =

(
3 −1+ i

1+ i −3

)
.

|ψ(t)|2 is preserved as expected.

|ψ(t)|2+ is not preserved however.
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Figure : |ψ(t)|2



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Example

Figure : |ψ(t)|2+



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

The probability of the system being in the state |ψi〉

The probability of the system being in the state |ψi 〉 can be
defined in the same way it is defined in the standard quantum
mechanics

Pr(|ψi 〉) =
|ωi |2

|ω1|2 + |ω2|2
=

|〈ψi ,ψ〉|2

∑
2
j=1 |〈ψj ,ψ〉|2
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Figure : Pr(|ψ1〉)
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Spin-Flip
The Rabi Experiment

Pauli equation in P-Hermitian quantum mechanics

i h̄
d |ψ(t)〉

dt
=−B ·M|ψ(t)〉

=−µB ·σ |ψ(t)〉

where B = (B0 cosω0t,B0 sinω0t,Bz),
|ψ(t)〉= a(t)e−iωt |ψ1〉+b(t)e iωt |ψ2〉 (ω =− µBz

h̄ is the
Larmor frequency), and σi , i = 1,2,3 are the Pauli matrices (in
P-Hermtian quantum mechanics) given by

σ1 =

(
0 −1
1 0

)
, σ2 =

(
0 i
i 0

)
, σ3 =

(
1 0
0 −1

)
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Spin-Flip
Continued

Figure : |ψ(t)|2 = |a(t)|2−|b(t)|2
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Spin-Flip
Continued

Figure : Pr(|ψ1〉)
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Continued

Figure : Pr(|ψ2〉)
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Symmetry of P-Hermitian Quantum Mechanics

Recall that the set of unitary transformations is the Lie group
SU(1,1). SU(1,1) is the universal cover of the Lorentz group
SO+(2,1).

SO+(2,1) is the symmetry group of Minkowski space R2+1.

No rotational symmetry SO(3) in P-Hermitian quantum
mechanics!

The universal cover ρ : SU(1,1)−→ SO+(2,1) is a double
cover and kerρ = Z2 = {±I}, so

SU(1,1)/Z2 = SO+(2,1)

Mathematically, this defines spin in P-Hermtian quantum
mechanics.



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Symmetry of P-Hermitian Quantum Mechanics

Recall that the set of unitary transformations is the Lie group
SU(1,1). SU(1,1) is the universal cover of the Lorentz group
SO+(2,1).

SO+(2,1) is the symmetry group of Minkowski space R2+1.

No rotational symmetry SO(3) in P-Hermitian quantum
mechanics!

The universal cover ρ : SU(1,1)−→ SO+(2,1) is a double
cover and kerρ = Z2 = {±I}, so

SU(1,1)/Z2 = SO+(2,1)

Mathematically, this defines spin in P-Hermtian quantum
mechanics.



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Symmetry of P-Hermitian Quantum Mechanics

Recall that the set of unitary transformations is the Lie group
SU(1,1). SU(1,1) is the universal cover of the Lorentz group
SO+(2,1).

SO+(2,1) is the symmetry group of Minkowski space R2+1.

No rotational symmetry SO(3) in P-Hermitian quantum
mechanics!

The universal cover ρ : SU(1,1)−→ SO+(2,1) is a double
cover and kerρ = Z2 = {±I}, so

SU(1,1)/Z2 = SO+(2,1)

Mathematically, this defines spin in P-Hermtian quantum
mechanics.



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Symmetry of P-Hermitian Quantum Mechanics

Recall that the set of unitary transformations is the Lie group
SU(1,1). SU(1,1) is the universal cover of the Lorentz group
SO+(2,1).

SO+(2,1) is the symmetry group of Minkowski space R2+1.

No rotational symmetry SO(3) in P-Hermitian quantum
mechanics!

The universal cover ρ : SU(1,1)−→ SO+(2,1) is a double
cover and kerρ = Z2 = {±I}, so

SU(1,1)/Z2 = SO+(2,1)

Mathematically, this defines spin in P-Hermtian quantum
mechanics.



2-State P-Hermitian Quantum System
Continuum P-Hermitian Quantum Mechanics

Questions

Quantum Angular Momentum in P-Hermitian Quantum
Mechanics

The symmetry of P-Hermitian quantum mechanics indicates
that quantum angular momentum would be different from that
of the standard quantum mechanics.

The quantum angular momentum can be derived from the
symmetry as

Lt =−i h̄
(
x

∂

∂y
− y

∂

∂x

)
Lx = i h̄

(
y

∂

∂ t
+ t

∂

∂y

)
Ly = i h̄

(
t

∂

∂x
+ x

∂

∂ t

)
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Indefinte Hermitian Product

Let P be the parity operator i.e. Pψ(x , t) = ψ(−x , t).

Define 〈 , 〉 on the space of state vectors by

〈ϕ,ψ〉= 〈ϕ|P|ψ〉

=
∫

∞

−∞

ϕ(x)ψ(−x)dx

Then 〈 , 〉 is an indefinite Hermitian product on the space of
state vectors.
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Adjoint Operators and Self-Adjointness

Let A be a linear operator on the space of state vectors.
Define its adjoint to be the operator A∗satisfying

〈ϕ,Aψ〉= 〈A∗ϕ,ψ〉

Equivalently ∫
∞

−∞

ϕ̄P(Aψ)dx =
∫

∞

−∞

A∗ϕPψ

A linear operator A is said to be self-adjoint or P-Hermitian if
A = A∗ or equivalently

〈Aϕ,ψ〉= 〈ϕ,Aψ〉
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Reality of eigenvalues of P-Hermitian operators

It is important to require that the eigenvalues (energies) of
Hamiltonian operators are real.

Thm. Let L be a P-Hermitian operator. Let λ be a nonreal
complex eigenvalue of L. Then its associated eigenvector has
vanishing squared norm.

Equivalently, the eigenvalues of a P-Hermitian operator are
real provided their associated eigenvectors have nonvanishing
squared norm.
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Time Evolution Operator and P-Hermitian Hamiltonian

Let H be a time independent Hamiltonian. Then the time
evolution operator U(x , t) is given by

U(x , t) = exp
(
− i
h̄
Ht
)

Thm. U(x , t) is unitary if and only if U∗ = U−1. Using this
theorem one can prove that:

Thm. U(x , t) is unitary if and only if H is P-Hermitian i.e.
H∗ = H.
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P-Hermiticity and PT -Symmetry

Defn. Let L be a time independent operator. L is said to be
PT -symmetric if PT L(x) = L(−x) = L(x).

Thm. If V (x) is a potential energy operator which acts on
|ψ(x)〉 by multiplication, then V (x) is P-Hermitian if and
only if it is PT -symmetric.

Cor. Hamiltonian H of the form

H =− h̄2

2m
∂ 2

∂x2 +V (x)

is P-Hermitian if and only if it is PT -symmetric.
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A New Class of Hamiltonians

In mathematics, any complex-valued function f (x) satisfying

f (−x) = f (x)

is called a Hermitian function. It can be shown that the real
and imaginary parts of a Hermitian function is an even and an
odd functions respectively.

P-Hermitian potential operators may be complex while
standard Hermitian potential operators must be real.

Examples of P-Hermtian potential operators V (x) includes

ix3, ix5, x2 + ix3,e ix = cosx + i sinx

etc.
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Questions

Time evolution with positive definite Hermitian product

PT -symmetric quantum physicists insist that they should use
positive definite Hermitian product to study PT -symmetric
quantum mechanics in order to interpret |ψ|2 as a probability.
However this leads to a serious problem for them.

Thm. Let H be a P-Hermitian hamiltonian of the form
H =− h̄2

2m
∂2

∂x2 +V (x). Then the time evolution operator
U(x , t) is unitary with respect to positive definite Hermitian
product if and only if V (x) is real.

This means that while they have real eigenvalues, complex
potentials are no longer physical if one insists using positive
definite Hermitian product.
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A possible connection to Riemann Hypothesis?

Riemann Hypothesis: All nontrivial zeros of the Riemann
zeta-function

ζ (s) = 2s
π

s−1 sin
(

πs
2

)
Γ(1− s)ζ (1− s)

, where 0< ℜ(s) < 1, lies on the critical line 1
2 + it.

Hilbert-Pólya Conjecture: The imaginary part of nontrivial
zeros 1

2 + it of the Riemann zeta function ζ (s) are the
eigenvalues of a Hermitian Hamiltonian H of a particle of mass
m that is moving under the influence of a potential V (x).

The Hilbert-Pólya Conjecture can be restated in terms of
P-Hermitian hamiltonians.
The nontrivial zeros of the Riemann zeta function ζ (s) are the
eigenvalues of a P-Hermitian potenial V (x) of the form
V (x) = 1

2 + if (x) where f (x)is an odd function.
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A Quote

“The universe is not only stranger than we imagine, it is stranger
than we can imagine.”
J. B. S. Haldane (5 November 1892 - 1 December 1964), a British
biologist and a commie.
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