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H-Hermtian Matrices

o Let C? denote the complex 2-dimensional vector space

o-{(5)sed

e For v,w € C?, define
(v,yw) = (v|Z|w)

=viow
1 0

0 -1
indefinte Hermitian product on C2.

where vi = vt and & = < ) Then (, ) defines an
@ Defn. A 2 x2 complex matrix H is called &2-Hermitan if
PH P =H
I
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H-Hermitan Matrices

Continued

o If His &-Hermitian, H can be written as

#=( % a)

where a and d are real numbers.
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Time Evolution

o Let U(t) =exp(—4Ht). Then |y(t)) = U(t)|y(0)) is a
solution of the Schrédinger equation

D (o))

e U(t) is called the time-evolution operator.

e U(t) is said to be unitary if it is an isometry i.e.

(w(t), w(t)) = (y(0), y(0)) for all t.
e Thm. U(t) is unitary if and only if

Uty 2u(t)=2
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Time Evolution
Continued

e Thm. U(t) is unitary if and only if H is Z7-Hermition.

@ The set of unitary transformations forms a Lie subgroup
U(1,1) of SL(2,C). U(1,1) is called the pseudo unitary group.

o If C2? is considered as a 2-dim indefinite Hermitian manifold,
the gauge group of the frame bundle LC? is U(1,1).

@ A 2x2 complex matrix H is &#2-Hermitian if and only if
—iH € u(1,1), the Lie algebra of U(1,1).
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Time Evolution
Continued

o If C? is orientable, the gauge group of LC?can be reduced to
SU(1,1), the special pseudo unitary group. The Lie algebra
su(1,1) of SU(1,1) is the set of elements in u(1,1) that are
trace-free. With the additional condition tr(H) =0, a
Z-Hermitian hamiltonian H can be written as

where a is a real number.
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|w|? is not a probability!

e Since |w|? could be positive, negative, or zero, |y|? cannot be
interpreted as a probability.

o Instead |w|?may be considered as an internal symmetry and
that the time evolution operator U(t) is required to preserve
the internal symmetry analogously to Lorentz transformations.

@ This bothered physicists so they looked for a workaround. And
there was one.
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ly|? is not a probability!

Continued

@ Define (, ), by

(v, W>+ =(v,ZPw)
= (v|w)

= V%W
Then (, ), defines a positive definte Hermitan product on C2.
o Physicists considered |y|2 = (,y), as a probability.

o However |y|2 cannot be a probability as it violates unitarity!
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Example

o Let |yg) = ( é ) and |y») = > Consider time evolution

7N
~ = o

of [y (1)) = wr(t)|y1) + @2(t)[y2) with
y_( 3 -l+i
1+ -3

o |y(t)|? is preserved as expected.

o |y(t)|2 is not preserved however.
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The probability of the system being in the state |y;)

@ The probability of the system being in the state |y;) can be
defined in the same way it is defined in the standard quantum
mechanics

|oi? (i w2

Pr(ly;)) = =
Vi) = o ol = T2, (v il
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Spin-Flip

The Rabi Experiment

@ Pauli equation in &?-Hermitian quantum mechanics

Ldlv(t)
i = B My ()

= —uB oly(t)

where B = (Bycosayt, Bysinapt, B;),

W(0)) = a(t)e ! yn) + b(t)e'|wa) (@ = — 2= is the
Larmor frequency), and o;, i =1,2,3 are the Pauli matrices (in
Z-Hermtian quantum mechanics) given by

o (O LY (0P (1 0
1=Vt o )= Li o)™ o -1
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Spin-Flip

Continued

Figure : |y(t)|? =|a(t)|*> — |b(¢)|?
I
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Spin-Flip

Continued
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Symmetry of &2-Hermitian Quantum Mechanics

@ Recall that the set of unitary transformations is the Lie group
SU(1,1). SU(1,1) is the universal cover of the Lorentz group
SO™(2,1).

e SO*(2,1) is the symmetry group of Minkowski space R?*1.

e No rotational symmetry SO(3) in &-Hermitian quantum
mechanics!

@ The universal cover p : SU(1,1) — SO™(2,1) is a double
cover and kerp =Zy = {+l/}, so

SU(1,1)/Z, = SOt (2,1)

Mathematically, this defines spin in &-Hermtian quantum
mechanics.
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Quantum Angular Momentum in &?-Hermitian Quantum
Mechanics

@ The symmetry of &7-Hermitian quantum mechanics indicates
that quantum angular momentum would be different from that
of the standard quantum mechanics.

@ The quantum angular momentum can be derived from the
symmetry as
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Indefinte Hermitian Product

o Let & be the parity operatori.e. Zy(x,t) = y(—x,t).
@ Define (, ) on the space of state vectors by

(0, v)=(0|Z|y)
_/ (%)

Then (, ) is an indefinite Hermitian product on the space of
state vectors.
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Adjoint Operators and Self-Adjointness

@ Let A be a linear operator on the space of state vectors.
Define its adjoint to be the operator A*satisfying

(0, Ay) = (A0, y)
e Equivalently

| szvn= [ Aory

@ A linear operator A is said to be self-adjoint or &2-Hermitian if
A = A* or equivalently

(Ap,y) = (9, Ay)
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Reality of eigenvalues of &?-Hermitian operators

@ It is important to require that the eigenvalues (energies) of
Hamiltonian operators are real.

@ Thm. Let L be a &7-Hermitian operator. Let A be a nonreal
complex eigenvalue of L. Then its associated eigenvector has
vanishing squared norm.

e Equivalently, the eigenvalues of a #2-Hermitian operator are
real provided their associated eigenvectors have nonvanishing
squared norm.
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Time Evolution Operator and &?-Hermitian Hamiltonian

@ Let H be a time independent Hamiltonian. Then the time
evolution operator U(x,t) is given by

U(x,t) = exp (—;Ht>

e Thm. U(x,t) is unitary if and only if U* = U~L. Using this
theorem one can prove that:

e Thm. U(x,t) is unitary if and only if H is Z-Hermitian i.e.
H*=H.
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P-Hermiticity and &7 -Symmetry

@ Defn. Let L be a time independent operator. L is said to be
P T -symmetric if T L(x)=L(—x)=L(x).

e Thm. If V(x) is a potential energy operator which acts on
|w(x)) by multiplication, then V(x) is &?-Hermitian if and
only if it is 2.7 -symmetric.

@ Cor. Hamiltonian H of the form

2 92
H= h 9 + V(x)

- 2max?

is Z-Hermitian if and only if it is &2.7-symmetric.
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A New Class of Hamiltonians

@ In mathematics, any complex-valued function f(x) satisfying
f(=x) = f(x)

is called a Hermitian function. It can be shown that the real
and imaginary parts of a Hermitian function is an even and an
odd functions respectively.

o P-Hermitian potential operators may be complex while
standard Hermitian potential operators must be real.
e Examples of &-Hermtian potential operators V(x) includes

ix3, ix3, x®+ix3,eX = cosx + isinx

etc.
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Time evolution with positive definite Hermitian product

o P T -symmetric quantum physicists insist that they should use
positive definite Hermitian product to study 2.7 -symmetric
quantum mechanics in order to interpret |y|2 as a probability.
However this leads to a serious problem for them.

o Thm. Le2t H be a #-Hermitian hamiltonian of the form
2 . .
H= —;—m% + V(x). Then the time evolution operator
U(x, t) is unitary with respect to positive definite Hermitian

product if and only if V/(x) is real.
@ This means that while they have real eigenvalues, complex

potentials are no longer physical if one insists using positive
definite Hermitian product.
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A possible connection to Riemann Hypothesis?

@ Riemann Hypothesis: All nontrivial zeros of the Riemann
zeta-function

__os-s—1_: E _ _
f(s)=2n sm( > )r(l s)E(1—5)
, where 0 < R(s) < 1, lies on the critical line 5+ it.

@ Hilbert-Pélya Conjecture: The imaginary part of nontrivial
zeros 1 + it of the Riemann zeta function {(s) are the
eigenvalues of a Hermitian Hamiltonian H of a particle of mass
m that is moving under the influence of a potential V/(x).

@ The Hilbert-Pélya Conjecture can be restated in terms of
Z-Hermitian hamiltonians.
The nontrivial zeros of the Riemann zeta function {(s) are the
eigenvalues of a &-Hermitian potenial V(x) of the form
V(x) = %+ if (x) where f(x)is an odd function.
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A Quote

“The universe is not only stranger than we imagine, it is stranger
than we can imagine.”

J. B. S. Haldane (5 November 1892 - 1 December 1964), a British
biologist and a commie.
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