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Abstract

In this paper, we construct spacelike surfaces of revolution with con-
stant mean curvature H = c and maximal spacelike surfaces of revolution
in de Sitter 3-space S3

1(c
2) of constant sectional curvature c2. It is shown

that surfaces of revolution with constant mean curvature H = c in S3
1(c

2)
tend toward the maximal catenoid, the maximal spacelike surface of rev-
olution in Minkowski 3-space R2+1 as c → 0. Maximal spacelike surfaces
of revolution in S3

1(c
2) also tend toward the maximal catenoid in R2+1 as

c → 0.
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Introduction

Spacelike surfaces of constant mean curvature H = c in de Sitter 3-space S31(c2)
of constant sectional curvature c2 share many geometric properties in common
with maximal spacelike surfaces in Minkowski 3-space R2+1 ([1], [7]), although
they live in two different spaces. It is not a coincidence. It turns out that there
is an analogue of the Lawson correspondence ([6]) between spacelike surfaces of
constant mean curvature Hs in S31(c2) and spacelike surfaces of constant mean
curvature Hm = ±

√
H2

h − c2 in R2+1 ([13]). In particular, there is a Law-
son type correspondence between spacelike surfaces of constant mean curvature
H = c in S31(c2) and maximal spacelike surfaces (i.e. conformal spacelike sur-
faces of constant mean curvatureH = 0) in R2+1. These corresponding constant
mean curvature surfaces satisfy the same Gauss-Codazzi equations. S31(c2) has
a rotational symmetry, in fact SO(2) symmetry as its maximum rotational sym-
metry. So we may consider surfaces of revolution, in particular with constant
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mean curvature H = c. Spacelike surfaces of constant mean curvature H = c in
S31(c2) can be in general constructed by Bryant type representation formula ([1],
[7]) using a holomorphic and a meromorphic functions analogously to the Weier-
strass representation formula for maximal surfaces in R2+1 ([5], [11]), however
it is not suitable to use to construct surfaces of revolution with constant mean
curvature H = c in S31(c2).

In section 1, we introduce the flat chart model of S31(c2). The flat chart
model is convenient in many respects for our study of surfaces of revolution in
S31(c2). In section 2, we calculate the mean curvature of a parametric spacelike
surface in S31(c2). In section 4, we use this mean curvature formula to obtain the
differential equation of the profile curve for a spacelike surface of revolution with
constant mean curvature H = c in S31(c2). The differential equation is nonlinear
and it cannot be solved analytically. By solving this equation numerically, we
construct a surface of revolution with constant mean curvature H = c in S31(c2).
In [1] and [7], it is shown that a maximal spacelike surface in R2+1 is the limit
of spacelike surfaces of constant mean curvature H = c in S31(c2) as c→ 0 using
the deformation of Lie groups. In section 4, it is shown that spacelike surfaces
of revolution with constant mean curvature H = c tend toward the spacelike
catenoid, the maximal spacelike surface of revolution in R2+1 as c → 0 in a
trivial manner from the differential equation. In section 5, we illustrate the
limiting behavior with graphics.

Maximal spacelike surfaces in S31(c2) are not characterized by mean curvature
unlike maximal spacelike surfaces in R2+1. In section 6, we construct maximal
spacelike surfaces of revolution in S31(c2) using the calculus of variations. The
maximal spacelike surfaces of revolution in S31(c2) also tend toward the spacelike
catenoid in R2+1 as c→ 0.

1 The Flat Chart Model of de Sitter 3-Space
S31(c2)

Let R3+1 denote the Minkowski spacetime with rectangular coordinates x0, x1,
x2, x3 and the Lorentzian metric

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (1)

de Sitter 3-space S31(c2) is the hyperquadric

S31(c2) := {(x0, x1, x2, x3) ∈ R3+1 : −(x0)2 + (x1)2 + (x2)2 + (x3)2 =
1

c2
} (2)

which is a 3-dimensional hyperboloid of one sheet in spacetime. It is a timelike
3-manifold of constant sectional curvature c2. Consider the open chart

U = {(x0, x1, x2, x3) ∈ S31(c2) : x0 + x1 > 0}
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and define (see [4])

t =
1

c
log c(x0 + x1),

x =
x2

c(x0 + x1)
,

y =
x3

c(x0 + x1)
.

(3)

Then
ds2 = −(dt)2 + e2ct{(dx)2 + (dy)2}.

R3 with coordinates t, x, y and the metric

gc := −(dt)2 + e2ct{(dx)2 + (dy)2} (4)

is called the flat chart model of de Sitter 3-space. We will still denote it by
S31(c2). As c→ 0, S31(c2) flattens out to Minkowski 3-space R2+1.

2 Parametric Spacelike Surfaces in S31(c2)
Let M be a domain1 and ϕ : M −→ S31(c2) an immersion. The metric (4)
induces an inner product 〈 , 〉 on each tangent space TpS31(c2).

Definition 1. An immersion ϕ : M(u, v) −→ S31(c2) is said to be spacelike if
both the tangent vectors ∂ϕ

∂u and ∂ϕ
∂v are spacelike, i.e.〈

∂ϕ

∂u
,
∂ϕ

∂u

〉
> 0,

〈
∂ϕ

∂v
,
∂ϕ

∂v

〉
> 0.

Using the induced inner product on each TpS31(c2), we can speak of conformal
surfaces in S31(c2).

Definition 2. ϕ :M −→ S31(c2) is said to be conformal if

〈ϕu, ϕv〉 = 0,

|ϕu| = |ϕv| = eω/2,
(5)

where (u, v) is a local coordinate system in M and ω :M −→ R is a real-valued
function in M .

The induced metric on the spacelike surface is given by

ds2ϕ = 〈dϕ, dϕ〉 = eω{(du)2 + (dv)2}. (6)

If N is a unit normal vector field of a spacelike immersion ϕ :M −→ S31(c2),
then

〈N,N〉 = −1, 〈N,ϕu〉 = 〈N,ϕv〉 = 0.

1A 2-dimensional connected open set.
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In order to calculate a unit normal vector field, we need an analogue of the
cross product of vectors in Euclidean 3-space R3. We will call such an analogue
still cross product. Although S31(c2) is not a vector space, cross product can be
defined locally on each tangent space TpS31(c2) which is a vector space. Let v =

v1
(

∂
∂t

)
p
+v2

(
∂
∂x

)
p
+v3

(
∂
∂y

)
p
, w = w1

(
∂
∂t

)
p
+w2

(
∂
∂x

)
p
+w3

(
∂
∂y

)
p
∈ TpS31(c2),

where

{(
∂
∂t

)
p
,
(

∂
∂x

)
p
,
(

∂
∂y

)
p

}
denote the canonical basis for TpS31(c2). Then

the cross product v ×w is defined to be

v ×w = (−v2w3 + v3w2)

(
∂

∂t

)
p

+ e−2ct(v3w1 − v1w3)

(
∂

∂x

)
p

+ e−2ct(v1w2 − v2w1)

(
∂

∂y

)
p

(7)

where p = (t, x, y) ∈ S31(c2). We can also write (7) simply as a determinant

v ×w =

∣∣∣∣∣∣
− ∂

∂t e−2ct ∂
∂x e−2ct ∂

∂y

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (8)

One may also define a triple scalar product 〈u,v ×w〉 as a determinant

〈u,v ×w〉 =

∣∣∣∣∣∣
−u1 e−2ctu2 e−2ctu3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (9)

However, as one can clearly see the cross product and the inner product is not
interchangeable i.e.

〈u,v ×w〉 6= 〈u× v,w〉

unlike Euclidean case.
Let

E := 〈ϕu, ϕu〉, F := 〈ϕu, ϕv〉, G := 〈ϕv, ϕv〉. (10)

Proposition 1. Let ϕ :M −→ S31(c2) be an immersion. Then on each tangent
plane Tpϕ(M),

|ϕu × ϕv|2 = e−4ct(u,v)(F 2 − EG) (11)

where p = (t(u, v), x(u, v), y(u, v)) ∈ S31(c2).

Proof. Straightforward by a direct calculation.

Remark 1. If c→ 0, (11) becomes the familiar formula in Lorentzian case [10]

|ϕu × ϕv|2 = F 2 − EG.
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Remark 2. The normal vector field ϕu × ϕv is timelike i.e. F 2 − EG < 0. So,
the norm |ϕu × ϕv| is defined to be the proper time

|ϕu × ϕv| := e−2ct(u,v)
√
EG− F 2. (12)

Accordingly, the unit normal vector field N of ϕ is given by

N =
ϕu × ϕv

e−2ct(u,v)
√
EG− F 2

. (13)

In physics, the trajectory of a massive particle is a timelike curve in spacetime.
The proper time is the actual time measured on a physical clock that is carried
along the timelike curve.

3 The Mean curvature of a Parametric Surface
in S31(c2)

In Euclidean case, the mean curvature of a parametric surface ϕ(u, v) may be
calculated by the Gauss’ beautiful formula [12]

H =
G`+ En− 2Fm

2(EG− F 2)
(14)

where
` = 〈ϕuu, N〉, m = 〈ϕuv, N〉, n = 〈ϕvv, N〉

and N is the unit normal vector field of ϕ(u, v). (14) is still valid for parametric
surfaces in any 3-dimensional space including S31(c2). For the proof, see for
instance Appendix A of [9].

Let ϕ : M −→ S31(c2) be a conformal spacelike surface satisfying (5) and N
a unit normal vector field of ϕ. Let Sp : Tpϕ(M) −→ Tpϕ(M) be the shape

operator given by Sp(v) = −∇vN for v ∈ Tpϕ(M). Let S =

(
a b
c d

)
be

the matrix associated with shape operator with respect to the orthogonal basis
ϕu, ϕv of Tpϕ(M). Then

S(ϕu) = aϕu + bϕv,

S(ϕv) = cϕu + dϕv.

So,

〈S(ϕu), ϕu〉+ 〈S(ϕv), ϕv〉 = eω(a+ b)

= eωTrS

= 2eωH.
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On the other hand, for a fixed v0, ϕ(u, v0) is a curve on the surface and consider
N to be restricted on this curve. Then S(ϕu) = −Nu. Differentiating 〈ϕu, N〉 =
0 with respect to u, we obtain

〈ϕuu, N〉 = −〈ϕu, Nu〉
= 〈ϕu, S(ϕu)〉.

Similarly, we also obtain 〈S(ϕv), ϕv〉 = 〈ϕvv, N〉. Finally the mean curvature
H is given by

H =
1

2
e−ω(〈ϕuu, N〉+ 〈ϕvv, N〉)

=
1

2
e−ω〈4ϕ,N〉

where 4 = ∂2

∂u2 + ∂2

∂v2 .

Proposition 2. Let ϕ :M −→ S31(c2) be a conformal spacelike surface satisfying
(5). Then the mean curvature H of ϕ is computed to be

H =
1

2
e−ω〈4ϕ,N〉. (15)

One can easily see that the formulas (14) and (15) coincide for conformal
surfaces.

4 Spacelike Surfaces of Revolution with Con-
stant Mean Curvature in S31(c2)

There is an interesting one-to-one correspondence, so called the Lawson corre-
spondence between constant mean curvature surfaces in different Riemannian
space forms [6]. The correspondence is more than just a bijection. Those cor-
responding constant mean curvature surfaces satisfy the same Gauss-Codazzi
equations, so they share many geometric properties in common, even though
they live in different spaces. For this reason they are often called cousins.
There is an analogue of the Lawson correspondence between spacelike constant
mean curvature surfaces in different semi-Riemannian space forms[13]. There
is a Lawson type correspondence between spacelike surfaces of constant mean
curvature Hs in S31(c2) and spacelike surfaces of constant mean curvature2

Hm = ±
√
H2

s − c2 (16)

In particular, surfaces of constant mean curvature H = ±c in S31(c2) are cousins
of maximal spacelike surfaces3 in Minkowski 3-space R2+1. The equation (16)

2The choice of ± signs depends on the orientation of the surface.
3Area maximizing spacelike surfaces or equivalently conformal spacelike surfaces with zero

mean curvature.
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tells that there are no constant mean curvature spacelike surfaces in R2+1 that
are corresponded to Hs = 0 spacelike surfaces in S31(c2). It can be easily shown
that there are no conformal spacelike surfaces of revolution with H = 0 in
S31(c2). (See Proposition 3 below.) Note however that this does not mean there
are no maximal spacelike surfaces of revolution in S31(c2) in case readers are
only familiar with maximal spacelike surfaces in Minkowski 3-space. A para-
metric spacelike surface is called a harmonic map if it is a critical point of the
area functional. A harmonic map is called a maximal surface4 if it is confor-
mal. From (15) , we see that H = 0 if and only if 4ϕ = 0. In Minkowski
3-space, ϕ is harmonic if and only if 4ϕ = 0, so a conformal parametric space-
like surface in R2+1 is maximal if and only if H = 0. (See [5], [11] for more
details about maximal spacelike surfaces and constant mean curvature surfaces
in R2+1.) However, this is no longer true in S31(c2) because the Laplace equation
4ϕ = 0 is not the harmonic map equation in S31(c2) as shown in [8]. Maximal
spacelike surfaces in S31(c3) can be constructed in general using the Weierstrass
representation formula obtained in [8]. In Section 6, we study how to construct
maximal surface of revolution in S31(c2) using the calculus of variations.

In this section, we are interested in constructing a spacelike surface of rev-
olution with constant mean curvature H = c in S31(c2) which corresponds to a
maximal spacelike surface in R2+1.

From the metric (4), one can see that S31(c2) has SO(2) symmetry i.e. SO(2)
is a subgroup of the isometry group of S31(c2) and it is the maximum rotational
symmetry. More specifically, the rotations about the t-axis (i.e. rotations on
the xy-plane) are the only type of Euclidean rotations that can be considered
in S31(c2).

Consider a profile curve α(u) = (g(u), h(u), 0) in the tx-plane. Denote by
ϕ(u, v) the rotation of α(u) about t-axis through an angle v. Then

ϕ(u, v) = (g(u), h(u) cos v, h(u) sin v). (17)

If ġ(u) = dg(u)
du is never 0, (17) has a parametrization of the form

ϕ(w, v) = (w, f(w) cos v, f(w) sin v).

Thus, without loss of generality we may assume that g(u) = u in (17). The
quantities E,F,G are calculated to be

E = e2cu{−e−2cu + ḣ(u)2},
F = 0,

G = e2cuh(u)2.

If we require ϕ(u, v) to be conformal, then

−e−2cu + ḣ(u)2 = h(u)2. (18)

4It is an area maximizing surface.
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The quantities `,m, n are calculated to be

` = − ḧ(u)h(u)√
h(u)2(−e−2cu + ḣ(u)2)

,

m = 0,

n =
h(u)2√

h(u)2(−e−2cu + ḣ(u)2)
.

So the mean curvature H is calculated by

H =
G`+ En− 2Fm

2(EG− F 2)

=
1

2

−h(u)ḧ(u)− e−2cu + ḣ(u)2

e2cu(−e−2cu + ḣ(u)2)
√
h(u)2(−e−2cu + ḣ(u)2)

.

With the conformality condition (18), H becomes

H =
−ḧ(u) + h(u)

2e2cuh(u)3
. (19)

Differentiating (18) with respect to u, we obtain

ḣ(u)(−ḧ(u) + h(u)) = ce−2cu. (20)

It follows from (19) and (20) that if H = 0 then c = 0 and hence we have:

Proposition 3. There are no conformal spacelike surface of revolution with
H = 0 in S31(c2).

Remark 3. In [9], the authors mentioned that the Lawson correspondence im-
plies that there is no surface in hyperbolic 3-space H3(−c2) with H = 0 unless
c = 0 in which case the space is Euclidean 3-space E3 (p.208). This is incor-
rect. The Lawson correspondence only implies that there are no constant mean
curvature surfaces in E3 that are corresponded to H = 0 surfaces in H3(−c2).
However, similarly to Proposition 3, it can be shown that there are no conformal
surfaces of revolution with H = 0 in H3(−c2).
Remark 4. Although H3(−c2) and S31(c2) do not admit conformal surfaces of
revolution with H = 0, there may be surfaces with H = 0 in H3(−c2) and in
S31(c2). The plane (0, u, v) is a conformal surface with H = 0 in H3(−c2) and
also in S31(c2). The helicoid (v, sinh v cosu, sinh v sinu) is a surface with H = 0
in H3(−c2). While it is a conformal surface in Euclidean 3-space E3 (i.e. when
c → 0), it is not a conformal surface in H3(−c2) because E = e−2cv cosh2 u,
F = 0, and G = 1 + e−2cv sinhu. The helicoid (v, cosh v cosu, cosh v sinu) is
a spacelike surface with H = 0 in S31(c2). While it is a conformal surface in
Minkowski 3-space R2+1 (i.e. when c → 0), it is not a conformal surface in
S31(c2) because E = e2cv(cosh2 u− 1), F = 0, and G = −1 + e2cv cosh2 u.
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Remark 5. If one considers the catenoid

ϕ(u, v) = (u, coshu cos v, coshu sin v)

in H3(−c2), it is not conformal in H3(−c2) since E = 1 + e−2cu sinh2 u, F = 0,
and G = e−2cu cosh2 u. Its mean curvature is neither 0 nor constant. It is given
by

H =
sinh(cu)

coshu(1 + e−2cu sinh2 u)
3
2

.

ϕ(u, v) satisfies the equation ϕuu + ϕvv = 0. Note that this does not lead to
H = 0 since ϕ(u, v) is not conformal.

Remark 6. If one considers the spacelike catenoid

ψ(u, v) = (u, sinhu cos v, sinhu sin v)

in S31(c2), it is not conformal in S31(c2) since E = −1 + e2cu cosh2 u, F = 0, and
G = e2cu sinh2 u. Its mean curvature is neither 0 nor constant. It is given by

H =
sinh(cu)

| sinhu|(−1 + e2cu cosh2 u)
3
2

.

ψ(u, v) satisfies the equation ψuu + ψvv = 0. However, this does not lead to
H = 0 since ψ(u, v) is not conformal.

Let H = c. Then (19) can be written as

ḧ(u)− h(u) + 2ce2cuh(u)3 = 0. (21)

Hence, constructing a surface of revolution with H = c comes down to solving
the second-order nonlinear differential equation (21). Unfortunately, we can-
not solve (21) analytically, so we solve it numerically with the aid of MAPLE
software. (See appendix 7 for details of the computational procedure.) In
the next section, we show the graphics of the surface of revolution with con-
stant mean curvature H = c in S31(c2) that we obtained using the numeri-
cal solution of the differential equation (21). The conformality condition (18)
may be used to determine initial conditions. For all the numerical solutions
of (21) in this paper, we used the same initial conditions h(0) = 1.5 and
ḣ(0) =

√
h(0)2 + 1 = 1.802775638.

If c→ 0, then (21) becomes

ḧ(u)− h(u) = 0 (22)

which is an equation of overdamped simple harmonic oscillator. (22) has the
general solution

h(u) = c1 coshu+ c2 sinhu.

This h(u) gives rise to a maximal spacelike surface of revolution in R2+1 which is
called a spacelike catenoid. Figure 1 shows a spacelike catenoid with h(0) = 1.5
and ḣ(0) = 1.802775638.
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(a) (b)

Fig. 1: (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Maximal Catenoid in R2+1

5 The Illustration of the Limit of Spacelike Sur-
faces of Revolution with H = c in S31(c2) as
c → 0

In section 4, it is shown that the limit of conformal spacelike surfaces of revo-
lution with constant mean curvature H = c in S31(c2) is the spacelike catenoid,
the maximal spacelike surface of revolution in R2+1. In this section, such limit-
ing behavior of conformal spacelike surfaces of revolution with H = c in S31(c2)
is illustrated with graphics in Figure 2 (H = 1), Figure 3 (H = 1

2 ), Figure 4
(H = 1

4 ), Figure 5 (H = 1
8 ), Figure 6 (H = 1

16 ), Figure 7 (H = 1
64 ), and Figure

8 (H = 1
256 ). Figure 8 (b) already looks pretty close to the catenoid in Figure 1.

In order to visualize better the limiting behavior of surfaces of revolution with
CMC H = c in S31(c2) as c→ 0, the author has made some animations available
in his website. An animation of profile curves for CMC H = c spacelike surfaces
of revolution in S31(c2) tending toward the profile curve of the catenoid in R2+1 as
c → 0 is available at http://www.math.usm.edu/lee/sldsprofileanim.gif.
An animation of CMC H = c spacelike surfaces of revolution in S31(c2) tend-
ing toward the spacelike catenoid in R2+1 as c → 0 is available at http:

//www.math.usm.edu/lee/sldscmcanim.gif. The same animation of CMC
H = c spacelike surfaces of revolution in S31(c2) with the spacelike catenoid in
R2+1 is available at http://www.math.usm.edu/lee/sldscmcanim2.gif.

6 Maximal Surface of Revolution in S31(c2)
In section 4, we pointed out that maximal spacelike surfaces in S31(c2) are no
longer characterized by mean curvature. In this section, we find the maximal
spacelike surface of revolution in S31(c2) as a critical point of the area functional
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(a) (b)

Fig. 2: CMC H = 1: (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike
Surface of Revolution in S31(1)

using the calculus of variations.
Let us consider a surface of revolution which is obtained by revolving a curve

x(t) in the tx-plane about the t-axis. The curve is required to pass through the
points (t1, x1) and (t2, x2) as seen in Figure 9. Our variational problem is to
choose the curve x(t) so that the area of the resulting surface of revolution is a
maximum. The area element dA shown in Figure 9 is given by

dA = 2πx(t)ds = 2πx(t)
√
−1 + e2ctẋ2dt, (23)

where ẋ = dx(t)
dt . The area functional is then

J =

∫ t2

t1

2πx(t)
√

−1 + e2ctẋ2dt. (24)

Let5

f(x, ẋ, t) = x
√

−1 + e2ctẋ2.

Finding a critical point of the area functional (24) is equivalent to solving the
Euler-Lagrange equation (see [2] for example)

∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (25)

which is equivalent to the second order nonlinear differential equation

−1 + e2ctẋ2 + xce4ctẋ3 − 2xce2ctẋ− xe2ctẍ = 0. (26)

5The constant 2π is neglected since it makes no contribution to the solution of our varia-
tional problem.
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(a) (b)

Fig. 3: CMC H = 1
2 : (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike

Surface of Revolution in S31
(
1
4

)
Recall that a maximal spacelike surface is a conformal harmonic map. Applying
the conformality condition (18), the equation (26) simplifies to

ẍ− c(−1 + e2ctx2)ẋ− x = 0. (27)

This nonlinear differential equation (27) cannot be solved analytically and again
we need to solve it numerically. Figure 10 shows the profile curve x(t) and the
maximal spacelike surface of revolution in S31(1). For the numerical solution,
we also used the same initial conditions x(0) = 1.5 and ẋ(0) = 1.802775638 as
before.

If c → 0, then (27) becomes the equation of overdamped simple harmonic
oscillator (22). Hence, as c → 0 maximal spacelike surfaces of revolution in
S31(c2) also tend toward the spacelike catenoid, the maximal spacelike surface of
revolution in R2+1. An animation of this limiting behavior of maximal spacelike
surfaces of revolution in S31(c2) is available at http://www.math.usm.edu/lee/
sldsmaximalanim.gif.

7 The Numerical Solution of (21) with MAPLE

The numerical solution of the differential equation (21) was obtained with the
aid of MAPLE software version 15. For the readers who want to try by them-
selves, here are the MAPLE commands that the authors used to obtain the
numerical solutions and the graphics. The commands need to be run in the
following order.

First we clear the memory.
restart:

In order to solve the equation numerically, we need a MAPLE package called
DEtools.
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(a) (b)

Fig. 4: CMC H = 1
4 : (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike

Surface of Revolution in S31
(

1
16

)
with(DEtools):

Set the c value. In this example, we set c = 1.
c:=1;

Define the differential equation (21).
eq:=diff(h(u),u,u)-h(u)+2*c*exp(2*c*u)*h(u)^3=0;

Define the initial conditions for the equation (21).
ic:=h(0)=1.5,D(h)(0)=1.802775638;

Get the numerical solution.
sol:=dsolve({eq,ic},numeric,output=listprocedure);

Define the numerical solution as a function Y .
Y:=subs(sol,h(u)):

For testing, we evaluate Y (.8).
Y(.8);

The output is
-0.0927814313394189

Now, we are ready to plot the profile curve h(u).
plot(Y,-5.5..3);

The output is Figure 2 (a).
In order to plot surfaces, we need plot3d which is a part of the package called

plots.
with(plots);

Define the surface of revolution X.
X:=[u,Y(u)*cos(v),Y(u)*sin(v)];

Finally, we plot the surface of revolution X.
plot3d(X,u=-5.5..3,v=0..2*Pi,grid=[85,85],style=patchnogrid,

shading=zhue,orientation=[62,64],color=blue,glossiness=1,

lightmodel=light1);
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(a) (b)

Fig. 5: CMC H = 1
8 : (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike

Surface of Revolution in S31
(

1
64

)
The output is Figure 2 (b).
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(a) (b)

Fig. 7: CMC H = 1
64 : (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike

Surface of Revolution in S31
(

1
4096

)

(a) (b)

Fig. 8: CMC H = 1
256 : (a) Profile Curve h(u), −5.5 ≤ u ≤ 3, (b) Spacelike

Surface of Revolution in S31
(

1
65535

)

16



t

x

ds

(t

(t

1 , x1)

2
, x2)

x(t)

Fig. 9: Surface of Revolution in S31(c2)

(a) (b)

Fig. 10: (a) Profile Curve x(t), −2.5 ≤ t ≤ 0.43, (b) Maximal Spacelike Surface
of Revolution in S31(1)
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