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Abstract. The 2-parameter family of certain homogeneous
Lorentzian 3-manifolds, which includes Minkowski 3-space and
anti-de Sitter 3-space, is considered. Each homogeneous Lorentzian
3-manifold in the 2-parameter family has a solvable Lie group
structure with left invariant metric. A generalized integral repre-
sentation formula for maximal spacelike surfaces in the homoge-
neous Lorentzian 3-manifolds is obtained. The normal Gauß map
of maximal spacelike surfaces and its harmonicity are discussed.

Introduction

In [3]-[4], J. Inoguchi studied Weierstraß-Enneper formula for min-
imal surfaces in the 2-parameter family of Riemannian homogeneous
spaces (R3, g[µ1, µ2]) with

g[µ1, µ2] = e−µ1tdx2 + e−µ2tdy2 + dt2.

Here, µ1, µ2 are real constants. Every homogeneous Riemannian man-
ifold in this family can be represented as a solvable matrix Lie group
with left invariant metric. This family of homogeneous Riemannian
manifolds includes Euclidean 3-space and hyperbolic 3-space. Eu-
clidean 3-space and hyperbolic 3-space are in fact the only homoge-
neous Riemannian manifolds in this family that have constant sectional
curvature. The Weierstraß-Enneper formula obtained by Inoguchi is a
generalized one that includes representation formulas for minimal sur-
faces in Euclidean 3-space, the well-known classical formula, and for
minimal surfaces in hyperbolic 3-space obtained by M. Kokubu in [7]
and independently by C. C. Góes and P. A. Q. Simões in [2]. The
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generalized Weierstraß-Enneper formula also contains an integral rep-
resentation formula, obtained by Mercuri, Montaldo and Piu [10], for
minimal surfaces in the Riemannian direct product H2 × E1 of hyper-
bolic 2-space and the real line E1. Minimal surfaces in H2 × E1 were
also studied by B. Nelli and H. Rosenberg in [11] and [12]. On the other
hand, in [8], the author considered the 2-parameter family of homoge-
neous Lorentzian 3-manifolds (R3(x0, x1, x2), g(µ1,µ2)) with Lorentzian
metric

g(µ1,µ2) = −(dx0)2 + e−2µ1x0
(dx1)2 + e−2µ2x0

(dx2)2.

Every homogeneous Lorentzian 3-manifold in this family can be repre-
sented as a solvable matrix Lie group with left invariant metric. This
family of homogeneous Lorentzian 3-manifolds includes Minkowski 3-
space E3

1, de Sitter 3-space S31(c2) of constant sectional curvature c2,
and S21(c2)× E1, the direct product of de Sitter 2-space S21(c2) of con-
stant curvature c2 and the real line E1. (In the family, only Minkowski
3-space and de Sitter 3-space have constant sectional curvature.) These
three spaces may be considered as Lorentzian counterparts of Eu-
clidean 3-space E3, hyperbolic 3-space H3(−c2), and the direct product
H2(−c2)× E1, respectively, of Thurston’s eight model geometries [13].
In [8], the author obtained a generalized integral representation formula
that includes Weierstraß representation formula for maximal spacelike
surfaces in Minkowski 3-space studied independently by O. Kobayashi
[6] and by L. McNertney [9], and Weierstraß representation formula for
maximal spacelike surfaces in de Sitter 3-space.

In this paper, we consider the 2-parameter family of homogeneous
Lorentzian 3-manifolds (R3(x0, x1, x2), g(µ1,µ2)) with Lorentzian metric

g(µ1,µ2) = −e−2µ1x2
(dx0)2 + e−2µ2x2

(dx1)2 + (dx2)2.

Every homogeneous Lorentzian manifold in this family can also be rep-
resented as a solvable matrix Lie group with left invariant metric. This
family of homogeneous Lorentzian 3-manifolds includes Minkowski 3-
space E3

1, anti-de Sitter 3-space H3
1(−c2) of constant sectional curvature

−c2, H2(−c2)× E1
1, the direct product of hyperbolic plane H2(−c2) of

constant curvature −c2 and the timeline E1
1, and H2

1(−c2) × E1, the
direct product of anti-de Sitter 2-space H2

1(−c2) of constant curvature
−c2 and the real line E1. (In the family, only Minkowski 3-space and
anti-de Sitter 3-space have constant sectional curvature.) These four
spaces may be considered as Lorentzian counterparts of Euclidean 3-
space E3, 3-sphere S3, the direct product H2(−c2) × E1, and S2 × E1,
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the direct product of 2-sphere S2 and the real line E1, respectively,
of Thurston’s eight model geometries [13]. We obtain a generalized
integral representation formula that includes, in particular, representa-
tion formulas for maximal spacelike surfaces in Minkowski 3-space ([6],
[9]) and in anti-de Sitter 3-space. The normal Gauß map of maximal
spacelike surfaces in G(µ1, µ2) is discussed. It is shown that Minkowski
3-space G(0, 0), anti-de Sitter 3-space G(c, c), and G(c,−c) are the
only homogeneous Lorentzian 3-manifolds among the 2-parameter fam-
ily members G(µ1, µ2) in which the (projected) normal Gauß map of
maximal spacelike surfaces is harmonic. The harmonic map equations
for those cases are also obtained.

1. Solvable Lie group

In this section, we study the following two-parameter family of ho-
mogeneous Lorentzian 3-manifolds;

(1)
{
(R3(x0, x1, x2), g(µ1,µ2)) | (µ1, µ2) ∈ R2

}
,

where the metrics g(µ1, µ2) are defined by

(2) g(µ1, µ2) := −e−2µ1x2
(dx0)2 + e−2µ2x2

(dx1)2 + (dx2)2.

Proposition 1. Each homogeneous space (R3, g(µ1,µ2)) is isometric to
the following solvable matrix Lie group:

G(µ1, µ2) =




eµ1x2
0 0 x0

0 eµ2x2
0 x1

0 0 1 x2

0 0 0 1


∣∣∣∣∣ x0, x1, x2 ∈ R


with left invariant metric. The group operation on G(µ1, µ2) is the
ordinary matrix multiplication and the corresponding group operation
on (R3, g(µ1,µ2)) is given by

(x0, x1, x2) · (x̃0, x̃1, x̃2) = (x0 + eµ1x2
x̃0, x1 + eµ2x2

x̃1, x2 + x̃2).

Proof. For ã = (a0, a1, a2) ∈ G(µ1, µ2), denote by Lã the left transla-
tion by ã. Then

Lã(x
0, x1, x2) = (a0, a1, a2) · (x0, x1, x2)

= (a0 + eµ1a2x0, a1 + eµ2a2x1, a2 + x2)
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and

L∗
ãg(µ1,µ2) = −e−2µ1(a2+x2){d(a0 + eµ1a2x0)}2+

e−2µ2(a2+x2){d(a1 + eµ2a2x1)}2 + {d(a2 + x2)}2

= −e−2µ1x2
(dx0)2 + e−2µ2x2

(dx1)2 + (dx2)2.

This completes the proof. □

The Lie algebra g(µ1, µ2) is given explicitly by

(3) g(µ1, µ2) =




µ1y
2 0 0 y0

0 µ2y
2 0 y1

0 0 0 y2

0 0 0 0


∣∣∣∣∣ y0, y1, y2 ∈ R

 .

Then we can take the following orthonormal basis {E0, E1, E2} of g(µ1, µ2):
(4)

E0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , E1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E2 =


µ1 0 0 0
0 µ2 0 0
0 0 0 1
0 0 0 0

 .

Then the commutation relation of g(µ1, µ2) is given by

[E0, E1] = 0, [E1, E2] = −µ2E1,

[E2, E0] = µ1E0.

[[g, g], [g, g]] = 0, so g(µ1, µ2) is a solvable Lie algebra i.e. G(µ1, µ2) is
a solvable Lie group. For X ∈ g(µ1, µ2), denote by ad(X)∗ the adjoint
operator of ad(X). Then it satisfies the equation

⟨[X,Y ], Z⟩ = ⟨Y, ad(X)∗(Z)⟩

for any Y, Z ∈ g(µ1, µ2). Let U be the symmetric bilinear operator on
g(µ1, µ2) defined by

U(X,Y ) :=
1

2
{ad(X)∗(Y ) + ad(Y )∗(X)}.

Lemma 2. Let {E0, E1, E2} be the orthonormal basis for g(µ1, µ2)
defined in (4). Then

U(E0, E0) = µ1E2, U(E1, E1) = −µ2E2, U(E2, E2) = 0,

U(E0, E1) = 0, U(E1, E2) =
µ2
2
E1, U(E2, E0) =

µ1
2
E0.
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Lemma 3 (M. Kokubu [7], K. Uhlenbeck [14]). Let D be a simply
connected domain. A smooth map φ : D −→ G(µ1, µ2) is harmonic if
and only if
(5)
(φ−1φu)u+(φ−1φv)v − ad(φ−1φu)

∗(φ−1φu)− ad(φ−1φv)
∗(φ−1φv) = 0

holds.

Let z = u + iv. Then in terms of complex coordinates z, z̄, the
harmonic map equation (5) can be written as

(6)
∂

∂z̄

(
φ−1∂φ

∂z

)
+

∂

∂z

(
φ−1∂φ

∂z̄

)
− 2U

(
φ−1∂φ

∂z
, φ−1∂φ

∂z̄

)
= 0.

Let φ−1dφ = Adz + Ādz̄. Then the equation (6) is equivalent to

(7) Az̄ + Āz = 2U(A, Ā).

The Maurer-Cartan equation is given by

(8) Az̄ − Āz = [A, Ā].

The equations (7) and (8) can be combined to a single equation

(9) Az̄ = U(A, Ā) +
1

2
[A, Ā].

The equation (9) is both the integrability condition for the differential
equation φ−1dφ = Adz+ Ādz̄ and the condition for φ to be a harmonic
map.

Left-translating the basis {E0, E1, E2}, we obtain the following or-
thonormal frame field:

e0 = eµ1x2 ∂

∂x0
, e1 = eµ2x2 ∂

∂x1
, e2 =

∂

∂x2
.

The Levi-Civita connection ∇ of G(µ1, µ2) is computed to be

∇e0e0 = −µ1e2, ∇e0e1 = 0, ∇e0e2 = −µ1e0,
∇e1e0 = 0, ∇e1e1 = µ2e2, ∇e1e2 = −µ2e1,
∇e2e0 = −µ1e0, ∇e2e1 = −µ2e1, ∇e2e2 = 0.

LetK(ei, ej) denote the sectional curvature of G(µ1, µ2) with respect
to the tangent plane spanned by ei and ej for i, j = 0, 1, 2. Then

(10)

K(e0, e1) = g00R1
010 = −µ1µ2,

K(e1, e2) = g11R2
121 = −µ22,

K(e0, e3) = g00R3
030 = −µ21,
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where gij = g(µ1,µ2)(ei, ej) denotes the metric tensor of G(µ1, µ2).
Hence, we see that G(µ1, µ2) has a constant sectional curvature if and
only if µ21 = µ22 = µ1µ2. If c := µ1 = µ2, then G(µ1, µ2) is locally
isometric to H3

1(−c2), the anti-de Sitter 3-space of constant sectional
curvature −c2. (See Example 2 and Remark 1.) If G(µ1, µ2) has a
constant sectional curvature and µ1 = −µ2, then µ1 = µ2 = 0, so
G(µ1, µ2) = G(0, 0) ∼= E3

1 (Example 1).

Example 1. (Minkowski 3-space) The Lie group G(0, 0) is isomorphic
and isometric to the Minkowski 3-space

E3
1 = (R3(x0, x1, x2),+)

with the metric −(dx0)2 + (dx1)2 + (dx2)2.

Example 2. (Anti-de Sitter 3-space) Take µ1 = µ2 = c ̸= 0. Then
G(c, c) is the flat chart model of the anti-de Sitter 3-space:

H3
1(−c2)+ = (R3(x0, x1, x2), e−2cx2{−(dx0)2 + (dx1)2}+ (dx2)2).

Remark 1. Let E4
2 be the pseudo-Euclidean 4-space with the metric

⟨·, ·⟩:

⟨·, ·⟩ = −(du0)2 − (du1)2 + (du2)2 + (du3)2.

in terms of rectangular coordinate system (u0, u1, u2, u3). The anti-de
Sitter 3-space H3

1(−c2) of constant sectional curvature −c2 is realized
as the hyperquadric in E4

2:

H3
1(−c2) =

{
(u0, u1, u2, u3) ∈ E4

2 : −(u0)2 − (u1)2 + (u2)2 + (u3)2 = − 1

c2

}
.

The anti-de Sitter 3-space H3
1(−c2) is divided into the following three

regions:

H3
1(−c2)+ = {(u0, u1, u2, u3) ∈ H3

1(−c2) : c(u1 + u2) > 0};
H3

1(−c2)0 = {(u0, u1, u2, u3) ∈ H3
1(−c2) : u1 + u2 = 0};

H3
1(−c2)− = {(u0, u1, u2, u3) ∈ H3

1(−c2) : c(u1 + u2) < 0}.

H3
1(−c2) is the disjoint union H3

1(−c2)+ ∔ H3
1(−c2)0 ∔ H3

1(c
2)− and

H3
1(−c2)± are diffeomorphic to (R3, g(c,c)). Let us introduce a local
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coordinate system (x0, x1, x2) on H3
1(−c2)+ by

x0 =
u0

c(u1 + u2)
,

x1 =
u3

c(u1 + u2)
,

x2 = −1

c
ln[c(u1 + u2)].

The induced metric of H3
1(−c2)+ is expressed as:

gc := e−2cx2{−(dx0)2 + (dx1)2}+ (dx2)2.

The chart (H3
1(−c2)+, gc) is called the flat chart of H3

1(−c2). The flat
chart is identified with the Lorentzian manifold (R3, g(c,c)) of constant

sectional curvature −c2. This expression shows that the flat chart

is a warped product E1 ×f E2
1 with warping function f(x2) = e−cx2

.

Introducing y0 = cx0, y1 = cx1, and y2 = ecx
2
, we also obtain half-

space model of anti-de Sitter 3-space H3
1(−c2) with an analogue of

Poincaré metric

gc :=
−(dy0)2 + (dy1)2 + (dy2)2

c2(y2)2
.

Example 3 (Direct Product H2(−c2)×E1
1). Take (µ1, µ2) = (0, c) with

c ̸= 0. Then the resulting homogeneous spacetime is R3 with the
Lorentzian metric

−(dx0)2 + e−2cx2
(dx1)2 + (dx2)2.

G(0, c) is identified with H2(−c2)×E1
1, the direct product of hyperbolic

plane H2(−c2) of constant curvature −c2 and the timeline E1
1.

Example 4 (Direct Product H2
1(−c2)×E1). Take (µ1, µ2) = (c, 0) with

c ̸= 0. Then the resulting homogeneous spacetime is R3 with the
Lorentzian metric

−e−2cx2
(dx0)2 + (dx2)2 + (dx1)2.

G(c, 0) is identified with H2
1(−c2) × E1, the direct product of anti-de

Sitter 2-space H2
1(−c2) of constant curvature −c2 and the real line E1.

Example 5 (Homogeneous Spacetime G(c,−c)). Let µ1 = c and µ2 =
−c with c ̸= 0. Then the resulting homogeneous spacetime G(c,−c) is
R3 with the Lorentzian metric

−e−2cx2
(dx0)2 + e2cx

2
(dx1)2 + (dx2)2.



8 SUNGWOOK LEE

2. Integral representation formula

In this section, we obtain a general integral representation formula
for maximal spacelike surfaces in G(µ1, µ2) analogously to [3] and [8].

Let D(z, z̄) be a simply connected domain and φ : D −→ G(µ1, µ2)
a smooth map. If we write φ(z) = (x0(z), x1(z), x2(z)) then by direct
calculation

A = x0ze
−µ1x2

E0 + x1ze
−µ2x2

E1 + x2zE2.

It follows from the harmonic map equation (7) that

Lemma 4. φ is harmonic if and only if the following equations hold:

x0zz̄ − µ1(x
0
z̄x

2
z + x0zx

2
z̄) = 0,

x1zz̄ − µ2(x
1
z̄x

2
z + x1zx

2
z̄) = 0,

x2zz̄ − µ1x
0
zx

0
z̄e

−2µ1x2
+ µ2x

1
zx

1
z̄e

−2µ2x2
= 0.

The exterior derivative d is decomposed as

d = ∂ + ∂̄, ∂ =
∂

∂z
dz, ∂̄ =

∂

∂z̄
dz̄,

with respect to the conformal structure of D. Let ω0 = e−µ1x2
x0zdz,

ω1 = e−µ2x2
x1zdz, ω

2 = x2zdz. Then by Lemma 4, the triplet {ω0, ω1, ω2}
of (1,0)-forms satisfies the following differential system:

∂̄ωi = µi+1ωi ∧ ω2, i = 0, 1,(11)

∂̄ω2 = µ1ω0 ∧ ω0 − µ2ω1 ∧ ω1.(12)

Proposition 5. Let {ω0, ω1, ω2} be a solution to (11)-(12) on a simply
connected domain D. Then

φ(z, z̄) = 2Re

∫ z

z0

(
eµ1x2(z,z̄) · ω0, eµ2x2(z,z̄) · ω1, ω2

)
is a harmonic map into G(µ1, µ2).
Conversely, any harmonic map of D into G(µ1, µ2) can be represented
in this form.

Corollary 6. Let {ω0, ω1, ω2} be a solution to (11)-(12) along with

(13) −ω0 ⊗ ω0 + ω1 ⊗ ω1 + ω2 ⊗ ω2 = 0

on a simply connected domain D. Then

φ(z, z̄) = 2Re

∫ z

z0

(
eµ1x2(z,z̄) · ω0, eµ2x2(z,z̄) · ω1, ω2

)
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is a weakly conformal harmonic map into G(µ1, µ2). Moreover φ(z, z̄)
is a maximal spacelike surface1 if

−ω0 ⊗ ω0 + ω1 ⊗ ω1 + ω2 ⊗ ω2 ̸= 0.

3. The normal Gauß map

Let φ : D −→ G(µ1, µ2) be a conformal surface. Take the future-
pointing unit normalN along φ. Then, by the left translation we obtain
the following smooth map:

φ−1 ·N : D −→ H2(−1),

where

H2(−1) = {u0E0 + u1E1 + u2E2 : −(u0)2 + (u1)2 + (u2)2 = −1, u0 > 0}
⊂ g(µ1, µ2)

is the unit hyperbolic 2-space. The Lie algebra g(µ1, µ2) is identi-
fied with Minkowski 3-space E3

1(u
0, u1, u2) via the orthonormal basis

{E0, E1, E2}. The smooth map φ−1 ·N is called the normal Gauß map
of φ.

Let φ : D → G(µ1, µ2) be a maximal spacelike immersion of a sim-
ply connected Riemann surface D determined by the data (ω0, ω1, ω2).
Write the data as ωi = ψidz, i = 0, 1, 2. Then the induced metric I of
φ is

(14)
I = 2(−ω0 ⊗ ω0 + ω1 ⊗ ω1 + ω2 ⊗ ω2)

= 2(−|ψ0|2 + |ψ1|2 + |ψ2|2)dzdz̄.

From the conformality condition (13),

(15) −(ψ0)2 + (ψ1)2 + (ψ2)2 = 0.

Hence, we can introduce two complex valued functions f and g by

(16) f := ψ1 − iψ2, g :=
ψ0

ψ1 − iψ2
.

Using these two functions, φ can be written as

(17) φ(z, z̄) = 2Re

∫ z

z0

(
eµ1x2

fg,
1

2
eµ2x2

f(1 + g2),
i

2
f(1− g2)

)
dz.

1From here on we mean a surface by an immersion.
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φ−1φz is given by

(18) φ−1φz = fgE0 +
1

2
f(1 + g2)E1 +

i

2
f(1− g2)E3.

So, the first fundamental form2 I is given in terms of f and g by

(19)
I = 2⟨φ−1φz, φ

−1φz̄⟩dzdz̄
= |f |2(1− |g|2)2dzdz̄.

The normal Gauß map is computed to be

φ−1 ·N =
1

1− |g|2
(
(1 + |g|2)E0 + 2Re (g)E1 + 2Im (g)E2

)
.

Let D = {ζ1E1 + ζ2E2 ⊂ R2 : (ζ1)2 + (ζ2)2 < 1}. Under the stereo-
graphic projection from −E0

℘+ : H2(−1) −→ D; ℘+(u0E0+u
1E1+u

2E2) =
u1

1 + u0
E1+

u2

1 + u0
E2,

the map φ−1 ·N is identified with the function g. If H2(−1) is defined
to be the hyperboloid of two sheets

H2(−1) = {u0E0 + u1E1 + u2E2 : −(u0)2 + (u1)2 + (u2)2 = −1},

then ℘+ : H2(−1) −→ Ĉ, where Ĉ denotes the extended complex plane
C ∪ {∞}. The function g is called the projected normal Gauß map of
φ. It follows from (11) and (12) that

ψi
z̄ = µi+1ψiψ2, i = 0, 1,(20)

ψ2
z̄ = µ1|ψ0|2 − µ2|ψ1|2.(21)

Using (20) and (21), we obtain

∂f

∂z̄
= −i|f |2

{
µ1|g|2 −

µ2
2
(1 + ḡ2)

}
,(22)

∂g

∂z̄
=
i

2
f̄{µ1ḡ(1 + g2)− µ2g(1 + ḡ2)}.(23)

As is seen in Section 1, G(0, 0) = E3
1 and G(c, c) = H3

1(−c2)+ are
the only cases of solvable Lie group G(µ1, µ2) with constant sectional
curvature. For G(0, 0) = E3

1,

∂f

∂z̄
=
∂g

∂z̄
= 0,

2It can be also obtained directly from (14).
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that is, both f and g are holomorphic. From (17), we retrieve the
Weierstraß representation formula for maximal spacelike surface φ :
D −→ E3

1 given by

(24) φ(z, z̄) = 2Re

∫ z

z0

(
fg,

1

2
f(1 + g2),

i

2
f(1− g2)

)
dz

in terms of holomorphic data (g, f). (24) was obtained independently
by O. Kobayashi [6] and by L. McNertney [9]. For G(c, c) = H3

1(−c2)+,

∂f

∂z̄
= −ic|f |2

{
|g|2 − 1

2
(1 + ḡ2)

}
,(25)

∂g

∂z̄
=
ic

2
f̄(ḡ − g)(1− |g|2).(26)

Then theWeierstraß representation formula (17) with µ1 = µ2 = c gives
rise to maximal spacelike surfaces in H3

1(−c2)+. If g is holomorphic, it
follows from (26) that g = ḡ or |g|2 = 1. If |g|2 = 1 then we see from
(19) that I = 0. If g = ḡ then g is real. This means that ψ2 = 0 (see
(16)) and from the conformality condition (15) we get (ψ0)2 = (ψ1)2.
But along with ψ2 = 0 this also leads to I = 0. Hence the projected
normal Gauß map of maximal spacelike surfaces in H3

1(−c2)+ cannot
be holomorphic.

It follows from (22) and (23) that the projected normal Gauß map
g satisfies the partial differential equation:

(27)

gzz̄ −
(µ21 − µ22)g(1 + g2)(1− ḡ2)|gz̄|2

[µ1g(1 + ḡ2)− µ2ḡ(1 + g2)][µ1ḡ(1 + g2)− µ2g(1 + ḡ2)]

− 2µ1|g|2 − µ2(1 + ḡ2)

µ1ḡ(1 + g2)− µ2g(1 + ḡ2)
gzgz̄ = 0.

The equation (27) is not the harmonic map equation for the projected
normal Gauß map g in general. The following theorem tells under what
conditions it becomes the harmonic map equation for g.

Theorem 7. The partial differential equation (27) is the harmonic
map equation for g if and only if µ21 = µ22. If µ1 = µ2 ̸= 0, then (27) is
simplified to

(28) gzz̄ +
1 + ḡ2 − 2|g|2

(ḡ − g)(1− |g|2)
gzgz̄ = 0.
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This equation is the harmonic map equation for a map g : D(z, z̄) −→(
Ĉ(w, w̄), 2dwdw̄

|(w̄−w)(1−|w|2)|

)
. If µ1 = −µ2, then (27) is simplified to

(29) gzz̄ −
1 + ḡ2 + 2|g|2

(g + ḡ)(1 + |g|2)
gzgz̄ = 0.

This equation is the harmonic map equation for a map g : D(z, z̄) −→(
Ĉ(w, w̄), 2dwdw̄

|(w+w̄)(1+|w|2)|

)
.

Proof. The tension field τ(g) of g is given by ([1], [15])

(30) τ(g) = 4λ−2(gzz̄ + Γw
wwgzgz̄),

where λ is a parameter of conformality. Here, Γw
ww denotes the Christof-

fel symbols of Ĉ(w, w̄). Comparing the equations (27) and τ(g) = 0,
we see that (27) is a harmonic map equation if and only if µ21 = µ22.

In order to find a suitable metric on Ĉ(w, w̄) with which (27) is a har-
monic map equation, one simply needs to solve the first order partial
differential equations

Γw
ww =



1 + w̄2 − 2|w|2

(w̄ − w)(1− |w|2)
if µ1 = µ2 ̸= 0,

− 1 + w̄2 + 2|w|2

(w + w̄)(1 + |w|2)
if µ1 = −µ2.

The solutions are

(gww̄) =



(
0 1

(w̄−w)(1−|w|2)
1

(w̄−w)(1−|w|2) 0

)
if µ1 = µ2 ̸= 0,

(
0 1

(w+w̄)(1+|w|2)
1

(w+w̄)(1+|w|2) 0

)
if µ1 = −µ2,

respectively. □

Remark 2. It is well-known that the projected Gauß map g of a max-
imal spacelike surface in G(0, 0) = E3

1 satisfies the Laplace-Beltrami
equation

△g = 4λ−2gzz̄ = 0.
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Remark 3. Theorem 7 tells us that Minkowski 3-space G(0, 0) = E3
1,

anti-de Sitter 3-space G(c, c) = H3
1(−c2)+, and G(c,−c) are the only

homogeneous 3-spacetimes amongG(µ1, µ2) in which the projected nor-
mal Gauß map of a maximal spacelike surface is harmonic.
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