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Abstract

We propose an alternative approach to gauge theoretical treatment of
quantum mechanics by lifting quantum state functions to the holomorphic
tangent bundle T+(C).

Introduction
In usual sense, quantum mechanics can be treated as a gauge theory by con-
sidering quantum state functions as sections of a complex line bundle over
Minkowski spacetime R3+1. In this paper, we propose an alternative approach
to a gauge theoretic treatment of quantum mechanics. A quantum state func-
tion ψ : R3+1 −→ C may be lifted to a vector field (called a lifted state) to
the holomorphic tangent bundle T+(C), where we regard C as a Hermitian
manifold. The vector field can be regarded as a holomorphic section of T+(C)
parametrized by space-time coordinates. The probability density of a lifted
state function is naturally defined by Hermitian metric on C. It turns out that
the probability density of a state function coincides with that of its lifted state.
Furthermore the Hilbert space structure of state functions is solely determined
by the Hermitan structure defined on each fibre T+

p (C) of T+(C). This means
that as observables a state and its lifted state are not distinguishable and we
may study a quantum mechanical model with lifted states in terms of Hermitian
differential geometry, consistently with the standard quantum mechanics. An
important application of the lifted quantum mechanics model is that when an
external electromagnetic field is introduced, the covariant derivative of a lifted
state function naturally gives rise to the new energy and momentum operators
for a charged particle resulted from the presence of the external electromagnetic
field. As a result we obtain new Schrödinger’s equation that describes the mo-
tion of a charged particle under the influence of the external electromagnetic
field.
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1 A Parametrized Vector Field as a Quantum
state Function

Here we regard C as a Hermitian manifold of complex dimension one with the
hermitian metric

g = dzµ ⊗ dz̄µ. (1)

Let R3+1 be the Minkowski 4-spacetime, which is R4 with coordinates (t, x1, x2, x3)
and Lorentz-Minkowski metric

ds2 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2.

Hereafter we simply denote R3+1 by M . In quantum mechanics, a particle is
described by a complex-valued wave function, a so-called state function, ψ :
M −→ C. The states ψ of a quantum mechanical system forms an infinite
dimensional complex Hilbert space H. In quantum mechanics the probability
that a wave function ψ exists inside volume V ⊂ M is given by

∫

V

ψ∗ψd3x,

where ψ∗ denotes the complex conjugation of ψ. Since there is no reason for C
to be the same complex vector space everywhere in the universe, rigorously ψ
should be regarded as a section of a complex line bundle over M . When we do
physics, we require sections (fields) to be nowhere vanishing so the vector bundle
is indeed a trvial bundle over M , i.e. M × C. This kind of rigorous treatment
of state functions is needed to study gauge theory and geometric quantization.

On the other hand, let φ : C −→ T (C) be a vector field, where T (C) =⋃
p∈C Tp(C) is the tangent bundle1 of C. The composite function ψφ := φ ◦ ψ :

M −→ T (C) is a lift of ψ to T (C) since any vector field is a section of the tangent
bundle T (C). Here we propose to study quantum mechanics by considering the
lifts as state functions. The lifts can be regarded as vector fields, i.e. sections
of tangent bundle, parametrized by spacetime coordinates. This way we can
directly connect the Hilbert space structure on the space of states and the
Hermitian metric on C i.e., in mathematical point of view, extending the notion
of states as the lifts may allow us to study quantum mechanics not only in
terms of functional analysis (as theory of Hilbert spaces) but also in terms of
differential geometry (as a gauge theory).

Definition 1. The probability of getting a particle described by a wave function
ψ inside volume V is called the expectation2 of ψ inside V .

1Since each fibre Tp(C) is a one-dimensional complex vector space, T (C) is a complex line
bundle.

2This should not confused with the expectation value or expected value in probability and
statistics.
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Definition 2. Let ψ′ : M −→ T (C) be a state3. The expectation of ψ′ inside
volume V is defined by ∫

V

g(ψ′, ψ′)d3x, (2)

where g is the Hermitian metric (1) on C.

Clearly there are infinitely many choices of the lifts of ψ. Among them we
are interested in a particular lift. In order to discuss that, let φ : C −→ T (C)
be a vector field defined in terms of real coordinates by

φ(x, y) = x
∂

∂x
+ y

∂

∂y
. (3)

In terms of complex variables, (3) is written as

φ(z, z̄) = z
∂

∂z
+ z̄

∂

∂z̄
, (4)

where φ is viewed as a map from C into the complexified tangent bundle of C,
φ : C −→ T (C)C :=

⋃
p∈C Tp(C)C. Note that T (C)C = T+(C) ⊕ T−(C) where

T+(C) =
⋃

p∈C T+
p (C) and T−(C) =

⋃
p∈C T−

p (C) are, respectively, holomor-
phic and anti-holomorphic tangent bundles of C. It should be noted that the
holomorphic tangent bundles are holomorphic vector bundles.

Definition 3. Let E and M are complex manifolds and π : E −→ M a holo-
morphic onto map. E is said to be a holomorphic vector bundle if

1. The typical fibre is Cn and the structure group is GL(n,C);

2. The local trivialization φα : Uα × Cn −→ π−1(Uα) is a biholomorphic
map;

3. The transition map hαβ : Uα ∩ Uβ −→ GL(n,C) is a holomorphic map.

Now,

ψφ(r, t) := φ ◦ ψ(r, t)

= ψ(r, t)

(
∂

∂z

)

ψ(r,t)

+ ψ̄(r, t)

(
∂

∂z̄

)

ψ(r,t)

∈ T (C)C.

Recalling that g
(

∂
∂z ,

∂
∂z

)
= g

(
∂
∂z̄ ,

∂
∂z̄

)
= 0 and g

(
∂
∂z ,

∂
∂z̄

)
= 1

2 , we obtain
∫

V

g(ψφ, ψφ)d
3x =

∫

V

ψψ∗d3x.

Thus we have the following proposition holds:
3Not every map ψ′ : M −→ T (C) is regarded as a state function. This will be clarified in

the following discussion.
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3Proposition 4. Any state function ψ : M −→ C can be lifted to ψ′ : M −→
T (C)C such that ∫

V

g(ψ′, ψ′)d3x =

∫

V

ψψ∗d3x. (5)

Physically the state functions ψ themselves are not observables but the dis-
tributions |ψ|2 are. So the probabilities

∫
V
|ψ|2d3x are also observables. Hence

as long as the both state functions and their lifts have the same probabilities
we may study quantum mechanics with the lifted state functions, consistently
with standard quantum mechanics.

Definition 5. A map ψ′ : M −→ T (C)C is called a lifted (quantum) state
function if ∫

V

g(ψ′, ψ′)d3x =

∫

V

(π ◦ ψ′)(π ◦ ψ′)∗d3x. (6)

Example 6. The map ψ′ : M −→ T (C)C given by

ψ′(r, t) = Aei(k·r−ωt) ∂

∂z
+ Āe−i(k·r−ωt) ∂

∂z̄
(7)

is a lifted state function. Note that ψ := π ◦ ψ′ = Aei(k·r−ωt) is a well-known
de Broglie wave, a plane wave that describes the motion of a free particle with
momentum p = k�, in quantum mechanics [Greiner]. Also note that ψ′ = ψφ

where φ is the vector field given in (4).

2 The Holomorphic Tangent Bundle T+(C) and
Hermitian Connection

From now on we will only consider a fixed vector field φ given in (4). Denote by
φ+ and φ− the holomorphic and the anti-holomorphic parts, respectively. Since
φ− = φ+, without loss of generality we may only consider the lifts ψφ+ : M −→
T+(C). One can define an inner product, called a Hermitian structure, on the
holomorphic tangent bundle T+(C) induced by the Hermitian metric g in (1):

Definition 7. We mean a Hermitian structure by an inner product on a holo-
morphic vector bundle π : E −→ M of a complex manifold M whose action at
p ∈ M is hp : π−1(p)× π−1(p) −→ C such that

1. hp(u, av + bw) = ahp(u, v) + bhp(u,w) for u, v, w ∈ π−1(p), a, b ∈ C,

2. hp(u, v) = hp(v, u), u, v ∈ π−1(p),

3. hp(u, u) ≥ 0, hp(u, u) = 0, if and only if u = h−1
α (p, 0), where hα :

π−1(Uα) −→ Uα × Cn is a (biholomorphic) local trivialization.

4. h(s1, s2) is a complex-valued smooth function on M for s1, s2 ∈ Γ(M,E),
where Γ(M,E) denotes the set of sections of the holomorphic vector bundle
π : E −→ M .

4
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Proposition 4. Any state function ψ : M −→ C can be lifted to ψ′ : M −→
T (C)C such that ∫

V

g(ψ′, ψ′)d3x =

∫

V

ψψ∗d3x. (5)

Physically the state functions ψ themselves are not observables but the dis-
tributions |ψ|2 are. So the probabilities

∫
V
|ψ|2d3x are also observables. Hence

as long as the both state functions and their lifts have the same probabilities
we may study quantum mechanics with the lifted state functions, consistently
with standard quantum mechanics.

Definition 5. A map ψ′ : M −→ T (C)C is called a lifted (quantum) state
function if ∫

V

g(ψ′, ψ′)d3x =

∫

V

(π ◦ ψ′)(π ◦ ψ′)∗d3x. (6)

Example 6. The map ψ′ : M −→ T (C)C given by

ψ′(r, t) = Aei(k·r−ωt) ∂

∂z
+ Āe−i(k·r−ωt) ∂

∂z̄
(7)

is a lifted state function. Note that ψ := π ◦ ψ′ = Aei(k·r−ωt) is a well-known
de Broglie wave, a plane wave that describes the motion of a free particle with
momentum p = k�, in quantum mechanics [Greiner]. Also note that ψ′ = ψφ

where φ is the vector field given in (4).

2 The Holomorphic Tangent Bundle T+(C) and
Hermitian Connection

From now on we will only consider a fixed vector field φ given in (4). Denote by
φ+ and φ− the holomorphic and the anti-holomorphic parts, respectively. Since
φ− = φ+, without loss of generality we may only consider the lifts ψφ+ : M −→
T+(C). One can define an inner product, called a Hermitian structure, on the
holomorphic tangent bundle T+(C) induced by the Hermitian metric g in (1):

Definition 7. We mean a Hermitian structure by an inner product on a holo-
morphic vector bundle π : E −→ M of a complex manifold M whose action at
p ∈ M is hp : π−1(p)× π−1(p) −→ C such that

1. hp(u, av + bw) = ahp(u, v) + bhp(u,w) for u, v, w ∈ π−1(p), a, b ∈ C,

2. hp(u, v) = hp(v, u), u, v ∈ π−1(p),

3. hp(u, u) ≥ 0, hp(u, u) = 0, if and only if u = h−1
α (p, 0), where hα :

π−1(Uα) −→ Uα × Cn is a (biholomorphic) local trivialization.

4. h(s1, s2) is a complex-valued smooth function on M for s1, s2 ∈ Γ(M,E),
where Γ(M,E) denotes the set of sections of the holomorphic vector bundle
π : E −→ M .

4The following proposition is straightforward.

Proposition 8. For each p ∈ C, define hp : T+
p (C)× T+

p (C) −→ C by

hp(u, v) = gp(u, v̄) for u, v ∈ T+
p (C).

Then h is a Hermitian structure on T+(C).

Definition 9. The expectation of ψφ inside volume V ⊂ M is defined simply
by ∫

V

h(ψφ+ , ψφ+)d3x. (8)

Remark 10. Note that
∫

V

h(ψφ+ , ψφ+)d3x =

∫

V

g(ψφ, ψφ)d
3x =

∫

V

ψψ∗d3x.

For an obvious reason, we would like to differentiate sections. If we cannot
differentiate sections (fields), we cannot do physics. Let E −→ M is a vector
bundle and s : E −→ M a section. Let γ : (−ε, ε) −→ M be a path through
γ(0) = m. The conventional definition of the rate of change of s in the direction
tangent to γ at m is

lim
t→0

s(γ(t))− s(γ(0))

t
.

However, this definition makes no sense at all, because s(γ(t)) ∈ Fγ(t) and
s(γ(0)) ∈ Fγ(0), and we cannot perform the required subtraction s(γ(t)) −
s(γ(0)). Hence we need to come up with an alternative way to differentiate
sections. It turns out that there is no unique way to differentiate sections
and one needs to make a choice of differentiation depending on one’s purpose.
Differentiation of sections of a bundle can be done by introducing the notion of
a connection. Here we particularly discuss a Hermitian connection. Denote by
Γ(M,E) the set of all sections s : M −→ E. Also denote by F(M)C the set of
complex-valued functions on M . Given a Hermitian structure h, we can define
a connection which is compatible with h.

Definition 11. Given a Hermitian structure h, we mean a Hermitian connec-
tion ∇ by a linear map ∇ : Γ(M,E) −→ Γ(M,E ⊗ T ∗MC) such that

1. ∇(fs) = (df)⊗ s+ f∇s, f ∈ F(M)C, s ∈ Γ(M,E). This is called Leibniz
rule.

2. d[h(s1, s2)] = h(∇s1, s2) + h(s1,∇s2). Due to this condition, we say that
the Hermitian connection ∇ is compatible with Hermitian structure h.

3. ∇s = Ds + D̄s, where Ds and D̄s, respectively, are a (1, 0)-form and a
(0, 1)-form. It is demanded that D̄ = ∂̄, where ∂̄ is the Dolbeault operator.

Regarding a Hermitian connection we have the following important property
holds:

5
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Proposition 4. Any state function ψ : M −→ C can be lifted to ψ′ : M −→
T (C)C such that ∫

V

g(ψ′, ψ′)d3x =

∫

V

ψψ∗d3x. (5)

Physically the state functions ψ themselves are not observables but the dis-
tributions |ψ|2 are. So the probabilities

∫
V
|ψ|2d3x are also observables. Hence

as long as the both state functions and their lifts have the same probabilities
we may study quantum mechanics with the lifted state functions, consistently
with standard quantum mechanics.

Definition 5. A map ψ′ : M −→ T (C)C is called a lifted (quantum) state
function if ∫

V

g(ψ′, ψ′)d3x =

∫

V

(π ◦ ψ′)(π ◦ ψ′)∗d3x. (6)

Example 6. The map ψ′ : M −→ T (C)C given by

ψ′(r, t) = Aei(k·r−ωt) ∂

∂z
+ Āe−i(k·r−ωt) ∂

∂z̄
(7)

is a lifted state function. Note that ψ := π ◦ ψ′ = Aei(k·r−ωt) is a well-known
de Broglie wave, a plane wave that describes the motion of a free particle with
momentum p = k�, in quantum mechanics [Greiner]. Also note that ψ′ = ψφ

where φ is the vector field given in (4).

2 The Holomorphic Tangent Bundle T+(C) and
Hermitian Connection

From now on we will only consider a fixed vector field φ given in (4). Denote by
φ+ and φ− the holomorphic and the anti-holomorphic parts, respectively. Since
φ− = φ+, without loss of generality we may only consider the lifts ψφ+ : M −→
T+(C). One can define an inner product, called a Hermitian structure, on the
holomorphic tangent bundle T+(C) induced by the Hermitian metric g in (1):

Definition 7. We mean a Hermitian structure by an inner product on a holo-
morphic vector bundle π : E −→ M of a complex manifold M whose action at
p ∈ M is hp : π−1(p)× π−1(p) −→ C such that

1. hp(u, av + bw) = ahp(u, v) + bhp(u,w) for u, v, w ∈ π−1(p), a, b ∈ C,

2. hp(u, v) = hp(v, u), u, v ∈ π−1(p),

3. hp(u, u) ≥ 0, hp(u, u) = 0, if and only if u = h−1
α (p, 0), where hα :

π−1(Uα) −→ Uα × Cn is a (biholomorphic) local trivialization.

4. h(s1, s2) is a complex-valued smooth function on M for s1, s2 ∈ Γ(M,E),
where Γ(M,E) denotes the set of sections of the holomorphic vector bundle
π : E −→ M .

4The following proposition is straightforward.

Proposition 8. For each p ∈ C, define hp : T+
p (C)× T+

p (C) −→ C by

hp(u, v) = gp(u, v̄) for u, v ∈ T+
p (C).

Then h is a Hermitian structure on T+(C).

Definition 9. The expectation of ψφ inside volume V ⊂ M is defined simply
by ∫

V

h(ψφ+ , ψφ+)d3x. (8)

Remark 10. Note that
∫

V

h(ψφ+ , ψφ+)d3x =

∫

V

g(ψφ, ψφ)d
3x =

∫

V

ψψ∗d3x.

For an obvious reason, we would like to differentiate sections. If we cannot
differentiate sections (fields), we cannot do physics. Let E −→ M is a vector
bundle and s : E −→ M a section. Let γ : (−ε, ε) −→ M be a path through
γ(0) = m. The conventional definition of the rate of change of s in the direction
tangent to γ at m is

lim
t→0

s(γ(t))− s(γ(0))

t
.

However, this definition makes no sense at all, because s(γ(t)) ∈ Fγ(t) and
s(γ(0)) ∈ Fγ(0), and we cannot perform the required subtraction s(γ(t)) −
s(γ(0)). Hence we need to come up with an alternative way to differentiate
sections. It turns out that there is no unique way to differentiate sections
and one needs to make a choice of differentiation depending on one’s purpose.
Differentiation of sections of a bundle can be done by introducing the notion of
a connection. Here we particularly discuss a Hermitian connection. Denote by
Γ(M,E) the set of all sections s : M −→ E. Also denote by F(M)C the set of
complex-valued functions on M . Given a Hermitian structure h, we can define
a connection which is compatible with h.

Definition 11. Given a Hermitian structure h, we mean a Hermitian connec-
tion ∇ by a linear map ∇ : Γ(M,E) −→ Γ(M,E ⊗ T ∗MC) such that

1. ∇(fs) = (df)⊗ s+ f∇s, f ∈ F(M)C, s ∈ Γ(M,E). This is called Leibniz
rule.

2. d[h(s1, s2)] = h(∇s1, s2) + h(s1,∇s2). Due to this condition, we say that
the Hermitian connection ∇ is compatible with Hermitian structure h.

3. ∇s = Ds + D̄s, where Ds and D̄s, respectively, are a (1, 0)-form and a
(0, 1)-form. It is demanded that D̄ = ∂̄, where ∂̄ is the Dolbeault operator.

Regarding a Hermitian connection we have the following important property
holds:

5

Theorem 12. Let M be a Hermitian manifold. Given a holomorphic vector
bundle π : E −→ M and a Hermitian structure h, there exists a unique Hermi-
tian connection.

Definition 13. A set of sections {ê1, · · · , êk} is called a unitary frame if

h(êµ, êν) = δµν . (9)

Associated with a tangent bundle TM over a manifold M is a principal
bundle called the frame bundle LM =

⋃
p∈M LpM , where LpM is the set of

frames at p ∈ M . Note that the unitary frame bundle LM is not a holomorphic
vector bundle because the structure group U(n) is not a complex manifold. Let
{ê1, · · · , êk} be a unitary frame. Define the local connection one-form4 ω = (ων

µ)
by

∇êµ = ων
µ ⊗ êν . (10)

By a straightforward calculation, we obtain

Proposition 14.
∇2êµ = ∇∇êµ = F ν

µ êν . (11)

The curvature of the Hermitian connection ∇ or physically field strength is
defined by the 2-form

F = dω +
1

2
ω ∧ ω. (12)

It follows from the definition of the Hermitian connection that:

Proposition 15. Both the connection form ω and the curvature F are skew-
Hermitian, i.e. ω, F ∈ u(n) where u(n) is the Lie algebra of the unitary group
U(n).

In terms of the Lie bracket [ , ] defined on u(n), (12) can be written as

F = dω + [ω, ω] (13)

By Theorem 12, there exists uniquely a Hermitian connection ∇ : Γ(C, T+(C)) −→
Γ(C, T+(C) ⊗ T ∗(C)C). Let Hφ+ be the set of all lifted state functions ψφ+ :
M −→ T+(C). Endowed with the inner product induced by the Hermitian
structure h, Hφ+ becomes an infinite dimensional complex Hilbert space.

Now

∇φ+ = ∇
(
z
∂

∂z

)

= dz ⊗ ∂

∂z
+ z∇

(
∂

∂z

)

= dz ⊗ ∂

∂z
+ ω ⊗ ∂

∂z

= (dz + ω)⊗ ∂

∂z
, (14)

4Physicists usually call it the gauge pontential.

6

The following proposition is straightforward.

Proposition 8. For each p ∈ C, define hp : T+
p (C)× T+

p (C) −→ C by

hp(u, v) = gp(u, v̄) for u, v ∈ T+
p (C).

Then h is a Hermitian structure on T+(C).

Definition 9. The expectation of ψφ inside volume V ⊂ M is defined simply
by ∫

V

h(ψφ+ , ψφ+)d3x. (8)

Remark 10. Note that
∫

V

h(ψφ+ , ψφ+)d3x =

∫

V

g(ψφ, ψφ)d
3x =

∫

V

ψψ∗d3x.

For an obvious reason, we would like to differentiate sections. If we cannot
differentiate sections (fields), we cannot do physics. Let E −→ M is a vector
bundle and s : E −→ M a section. Let γ : (−ε, ε) −→ M be a path through
γ(0) = m. The conventional definition of the rate of change of s in the direction
tangent to γ at m is

lim
t→0

s(γ(t))− s(γ(0))

t
.

However, this definition makes no sense at all, because s(γ(t)) ∈ Fγ(t) and
s(γ(0)) ∈ Fγ(0), and we cannot perform the required subtraction s(γ(t)) −
s(γ(0)). Hence we need to come up with an alternative way to differentiate
sections. It turns out that there is no unique way to differentiate sections
and one needs to make a choice of differentiation depending on one’s purpose.
Differentiation of sections of a bundle can be done by introducing the notion of
a connection. Here we particularly discuss a Hermitian connection. Denote by
Γ(M,E) the set of all sections s : M −→ E. Also denote by F(M)C the set of
complex-valued functions on M . Given a Hermitian structure h, we can define
a connection which is compatible with h.

Definition 11. Given a Hermitian structure h, we mean a Hermitian connec-
tion ∇ by a linear map ∇ : Γ(M,E) −→ Γ(M,E ⊗ T ∗MC) such that

1. ∇(fs) = (df)⊗ s+ f∇s, f ∈ F(M)C, s ∈ Γ(M,E). This is called Leibniz
rule.

2. d[h(s1, s2)] = h(∇s1, s2) + h(s1,∇s2). Due to this condition, we say that
the Hermitian connection ∇ is compatible with Hermitian structure h.

3. ∇s = Ds + D̄s, where Ds and D̄s, respectively, are a (1, 0)-form and a
(0, 1)-form. It is demanded that D̄ = ∂̄, where ∂̄ is the Dolbeault operator.

Regarding a Hermitian connection we have the following important property
holds:

5
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Theorem 12. Let M be a Hermitian manifold. Given a holomorphic vector
bundle π : E −→ M and a Hermitian structure h, there exists a unique Hermi-
tian connection.

Definition 13. A set of sections {ê1, · · · , êk} is called a unitary frame if

h(êµ, êν) = δµν . (9)

Associated with a tangent bundle TM over a manifold M is a principal
bundle called the frame bundle LM =

⋃
p∈M LpM , where LpM is the set of

frames at p ∈ M . Note that the unitary frame bundle LM is not a holomorphic
vector bundle because the structure group U(n) is not a complex manifold. Let
{ê1, · · · , êk} be a unitary frame. Define the local connection one-form4 ω = (ων

µ)
by

∇êµ = ων
µ ⊗ êν . (10)

By a straightforward calculation, we obtain

Proposition 14.
∇2êµ = ∇∇êµ = F ν

µ êν . (11)

The curvature of the Hermitian connection ∇ or physically field strength is
defined by the 2-form

F = dω +
1

2
ω ∧ ω. (12)

It follows from the definition of the Hermitian connection that:

Proposition 15. Both the connection form ω and the curvature F are skew-
Hermitian, i.e. ω, F ∈ u(n) where u(n) is the Lie algebra of the unitary group
U(n).

In terms of the Lie bracket [ , ] defined on u(n), (12) can be written as

F = dω + [ω, ω] (13)

By Theorem 12, there exists uniquely a Hermitian connection ∇ : Γ(C, T+(C)) −→
Γ(C, T+(C) ⊗ T ∗(C)C). Let Hφ+ be the set of all lifted state functions ψφ+ :
M −→ T+(C). Endowed with the inner product induced by the Hermitian
structure h, Hφ+ becomes an infinite dimensional complex Hilbert space.

Now

∇φ+ = ∇
(
z
∂

∂z

)

= dz ⊗ ∂

∂z
+ z∇

(
∂

∂z

)

= dz ⊗ ∂

∂z
+ ω ⊗ ∂

∂z

= (dz + ω)⊗ ∂

∂z
, (14)

4Physicists usually call it the gauge pontential.

6
where ω ∈ u(1) is the connection one-form. Using the formula (14), we can
define a covariant derivative ∇φ+

: Hφ+ −→ Γ(C, T+(C)⊗ T ∗(C)C):

∇φ+

ψφ+ = (dψ + ψω)⊗ ∂

∂z
. (15)

Using the formula (15), we can now differentiate our lifted state functions. This
means we can do quantum mechanics with lifted state functions and that due
to the nature of our connection in (15), we may treat quatum mechanics as a
gauge theory as we will see in Section 4.

3 Sections of Frame Bundle LM and Gauge Trans-
formations

In this section, we discuss only the case of complex line bundles for simplicity.
It is also sufficient for us because our tangent bundle is essentially a complex
line bundle. Let π : L −→ M be a complex line bundle over a Hermitian
manifold M of complex dimension one and ∇ a Hermitian connection of the
vector bundle. Let êα be a unitary frame on a chart Uα ⊆ M . Then there exist
a connection one-form ωα such that

∇êα = ωα ⊗ êα. (16)

Suppose that Uβ is another chart of M such that Uα ∩ Uβ �= Ø. The transition
map gαβ : Uα ∩ Uβ −→ GL(1,C) ∼= C× can be defined by

êα = gαβ êβ . (17)

Here C× denotes the multiplicative gorup of nonzero complex numbers. The
transition map gαβ gives rise to the change of coordinates. Since êα and êβ are
related by (17) on Uα ∩ Uβ �= Ø, we obtain

∇êα = ∇(gαβ êβ)

= (dgαβ)⊗ êβ + gαβ∇êβ . (18)

By (16) we have
ωα ⊗ êα = (dgαβ + gαβωβ)⊗ êβ (19)

or equivalently by (17)
ωα = g−1

αβdgαβ + ωβ . (20)

Note that g−1
αβdgαβ ∈ u(1). The formula (19) tells how the gauge potentials

ωα and ωβ are related. Physicists call (19) a gauge transformation. Just as a
mathematical theory should not depend on a certain coordinate system, neither
should a physical theory. It would be really awkward if we have two different
physical theories regarding the same phenomenon here on Earth and on Alpha
Centauri. For that reason, physicists require particle theory be gauge invariant
(i.e. invariant under gauge transformations).

7
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Theorem 12. Let M be a Hermitian manifold. Given a holomorphic vector
bundle π : E −→ M and a Hermitian structure h, there exists a unique Hermi-
tian connection.

Definition 13. A set of sections {ê1, · · · , êk} is called a unitary frame if

h(êµ, êν) = δµν . (9)

Associated with a tangent bundle TM over a manifold M is a principal
bundle called the frame bundle LM =

⋃
p∈M LpM , where LpM is the set of

frames at p ∈ M . Note that the unitary frame bundle LM is not a holomorphic
vector bundle because the structure group U(n) is not a complex manifold. Let
{ê1, · · · , êk} be a unitary frame. Define the local connection one-form4 ω = (ων

µ)
by

∇êµ = ων
µ ⊗ êν . (10)

By a straightforward calculation, we obtain

Proposition 14.
∇2êµ = ∇∇êµ = F ν

µ êν . (11)

The curvature of the Hermitian connection ∇ or physically field strength is
defined by the 2-form

F = dω +
1

2
ω ∧ ω. (12)

It follows from the definition of the Hermitian connection that:

Proposition 15. Both the connection form ω and the curvature F are skew-
Hermitian, i.e. ω, F ∈ u(n) where u(n) is the Lie algebra of the unitary group
U(n).

In terms of the Lie bracket [ , ] defined on u(n), (12) can be written as

F = dω + [ω, ω] (13)

By Theorem 12, there exists uniquely a Hermitian connection ∇ : Γ(C, T+(C)) −→
Γ(C, T+(C) ⊗ T ∗(C)C). Let Hφ+ be the set of all lifted state functions ψφ+ :
M −→ T+(C). Endowed with the inner product induced by the Hermitian
structure h, Hφ+ becomes an infinite dimensional complex Hilbert space.

Now

∇φ+ = ∇
(
z
∂

∂z

)

= dz ⊗ ∂

∂z
+ z∇

(
∂

∂z

)

= dz ⊗ ∂

∂z
+ ω ⊗ ∂

∂z

= (dz + ω)⊗ ∂

∂z
, (14)

4Physicists usually call it the gauge pontential.

6
where ω ∈ u(1) is the connection one-form. Using the formula (14), we can
define a covariant derivative ∇φ+

: Hφ+ −→ Γ(C, T+(C)⊗ T ∗(C)C):

∇φ+

ψφ+ = (dψ + ψω)⊗ ∂

∂z
. (15)

Using the formula (15), we can now differentiate our lifted state functions. This
means we can do quantum mechanics with lifted state functions and that due
to the nature of our connection in (15), we may treat quatum mechanics as a
gauge theory as we will see in Section 4.

3 Sections of Frame Bundle LM and Gauge Trans-
formations

In this section, we discuss only the case of complex line bundles for simplicity.
It is also sufficient for us because our tangent bundle is essentially a complex
line bundle. Let π : L −→ M be a complex line bundle over a Hermitian
manifold M of complex dimension one and ∇ a Hermitian connection of the
vector bundle. Let êα be a unitary frame on a chart Uα ⊆ M . Then there exist
a connection one-form ωα such that

∇êα = ωα ⊗ êα. (16)

Suppose that Uβ is another chart of M such that Uα ∩ Uβ �= Ø. The transition
map gαβ : Uα ∩ Uβ −→ GL(1,C) ∼= C× can be defined by

êα = gαβ êβ . (17)

Here C× denotes the multiplicative gorup of nonzero complex numbers. The
transition map gαβ gives rise to the change of coordinates. Since êα and êβ are
related by (17) on Uα ∩ Uβ �= Ø, we obtain

∇êα = ∇(gαβ êβ)

= (dgαβ)⊗ êβ + gαβ∇êβ . (18)

By (16) we have
ωα ⊗ êα = (dgαβ + gαβωβ)⊗ êβ (19)

or equivalently by (17)
ωα = g−1

αβdgαβ + ωβ . (20)

Note that g−1
αβdgαβ ∈ u(1). The formula (19) tells how the gauge potentials

ωα and ωβ are related. Physicists call (19) a gauge transformation. Just as a
mathematical theory should not depend on a certain coordinate system, neither
should a physical theory. It would be really awkward if we have two different
physical theories regarding the same phenomenon here on Earth and on Alpha
Centauri. For that reason, physicists require particle theory be gauge invariant
(i.e. invariant under gauge transformations).

7

The converse is also true, namely if {ωα} is a collection of one-forms satisfy-
ing (20) on Uα ∩Uβ �= Ø, then there exists a Hermitian connection ∇ such that
∇êα = ωα ⊗ êα. First define ∇êα = ωα ⊗ êα for each section êα : Uα −→ LM .
On Uα ∩ Uβ �= Ø, (18) holds and it must coincide with ωα ⊗ êα. By (17) and
(20)

ωα ⊗ êα = g−1
αβdgαβ ⊗ êα + ωβ êα

= dgαβ ⊗ (g−1
αβ êα) + ωβ(gαβ êβ)

= dgαβ ⊗ êβ + gαβ∇êβ .

Let ξ ∈ Γ(M,LM) be an arbitrary section. Then ξ|Uα = ξαêα, where ξα :
Uα −→ C. By Leibniz rule

∇ξ|Uα = dξα ⊗ êα + ξα∇êα

= (dξα + ωαξα)⊗ êα. (21)

∇êαµ can be then extended to ∇ξ using (21).
Let Fα be the two-form5

Fα = dωα

defined on Uα. Physically Fα is the field strength relative to the unitary frame
field êα : Uα −→ LM . On Uα ∩ Uβ �= Ø, the gauge potentials ωα and ωβ

are related by the gauge tranformation (20). If Fα and Fβ do not coincide
on Uα ∩ Uβ , it would be again a physically awkward situation. The following
proposition tells that it will not happen.

Proposition 16. Let Fαand Fβ be the field strength relative to the unitary frame
fields êα : Uα −→ LM and êβ : Uβ −→ LM , respectively. If Uα ∩Uβ �= Ø, then
Fα = Fβ on Uα ∩ Uβ.

Proof.

Fα = dωα

= d(g−1
αβdgαβ + ωβ)

= dg−1
αβ ∧ dgαβ + g−1

αβd(dgαβ) + dωβ

= −g−1
αβ (dgαβ)g

−1
αβ ∧ dgαβ + dωβ

= dωβ = Fβ ,

since gαβg
−1
αβ = I and d(dgαβ) = 0.

Physically what Proposition 16 says is that the field strength is invariant
under the gauge transformation (19). The two-forms Fα and Fβ agree on the
intersection of two open sets Uα and Uβ in the cover and hence define a global
two-form. It is denoted by F and is called the curvature of ∇.

5Fα ∈ u(1) and u(1) is a commutative Lie algebra, so [ωα, ωα] = 0.
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where ω ∈ u(1) is the connection one-form. Using the formula (14), we can
define a covariant derivative ∇φ+

: Hφ+ −→ Γ(C, T+(C)⊗ T ∗(C)C):

∇φ+

ψφ+ = (dψ + ψω)⊗ ∂

∂z
. (15)

Using the formula (15), we can now differentiate our lifted state functions. This
means we can do quantum mechanics with lifted state functions and that due
to the nature of our connection in (15), we may treat quatum mechanics as a
gauge theory as we will see in Section 4.

3 Sections of Frame Bundle LM and Gauge Trans-
formations

In this section, we discuss only the case of complex line bundles for simplicity.
It is also sufficient for us because our tangent bundle is essentially a complex
line bundle. Let π : L −→ M be a complex line bundle over a Hermitian
manifold M of complex dimension one and ∇ a Hermitian connection of the
vector bundle. Let êα be a unitary frame on a chart Uα ⊆ M . Then there exist
a connection one-form ωα such that

∇êα = ωα ⊗ êα. (16)

Suppose that Uβ is another chart of M such that Uα ∩ Uβ �= Ø. The transition
map gαβ : Uα ∩ Uβ −→ GL(1,C) ∼= C× can be defined by

êα = gαβ êβ . (17)

Here C× denotes the multiplicative gorup of nonzero complex numbers. The
transition map gαβ gives rise to the change of coordinates. Since êα and êβ are
related by (17) on Uα ∩ Uβ �= Ø, we obtain

∇êα = ∇(gαβ êβ)

= (dgαβ)⊗ êβ + gαβ∇êβ . (18)

By (16) we have
ωα ⊗ êα = (dgαβ + gαβωβ)⊗ êβ (19)

or equivalently by (17)
ωα = g−1

αβdgαβ + ωβ . (20)

Note that g−1
αβdgαβ ∈ u(1). The formula (19) tells how the gauge potentials

ωα and ωβ are related. Physicists call (19) a gauge transformation. Just as a
mathematical theory should not depend on a certain coordinate system, neither
should a physical theory. It would be really awkward if we have two different
physical theories regarding the same phenomenon here on Earth and on Alpha
Centauri. For that reason, physicists require particle theory be gauge invariant
(i.e. invariant under gauge transformations).

7
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The converse is also true, namely if {ωα} is a collection of one-forms satisfy-
ing (20) on Uα ∩Uβ �= Ø, then there exists a Hermitian connection ∇ such that
∇êα = ωα ⊗ êα. First define ∇êα = ωα ⊗ êα for each section êα : Uα −→ LM .
On Uα ∩ Uβ �= Ø, (18) holds and it must coincide with ωα ⊗ êα. By (17) and
(20)

ωα ⊗ êα = g−1
αβdgαβ ⊗ êα + ωβ êα

= dgαβ ⊗ (g−1
αβ êα) + ωβ(gαβ êβ)

= dgαβ ⊗ êβ + gαβ∇êβ .

Let ξ ∈ Γ(M,LM) be an arbitrary section. Then ξ|Uα = ξαêα, where ξα :
Uα −→ C. By Leibniz rule

∇ξ|Uα = dξα ⊗ êα + ξα∇êα

= (dξα + ωαξα)⊗ êα. (21)

∇êαµ can be then extended to ∇ξ using (21).
Let Fα be the two-form5

Fα = dωα

defined on Uα. Physically Fα is the field strength relative to the unitary frame
field êα : Uα −→ LM . On Uα ∩ Uβ �= Ø, the gauge potentials ωα and ωβ

are related by the gauge tranformation (20). If Fα and Fβ do not coincide
on Uα ∩ Uβ , it would be again a physically awkward situation. The following
proposition tells that it will not happen.

Proposition 16. Let Fαand Fβ be the field strength relative to the unitary frame
fields êα : Uα −→ LM and êβ : Uβ −→ LM , respectively. If Uα ∩Uβ �= Ø, then
Fα = Fβ on Uα ∩ Uβ.

Proof.

Fα = dωα

= d(g−1
αβdgαβ + ωβ)

= dg−1
αβ ∧ dgαβ + g−1

αβd(dgαβ) + dωβ

= −g−1
αβ (dgαβ)g

−1
αβ ∧ dgαβ + dωβ

= dωβ = Fβ ,

since gαβg
−1
αβ = I and d(dgαβ) = 0.

Physically what Proposition 16 says is that the field strength is invariant
under the gauge transformation (19). The two-forms Fα and Fβ agree on the
intersection of two open sets Uα and Uβ in the cover and hence define a global
two-form. It is denoted by F and is called the curvature of ∇.

5Fα ∈ u(1) and u(1) is a commutative Lie algebra, so [ωα, ωα] = 0.
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Remark 17. In a principal G-bundle, if the structure group G is a matrix Lie
group, the gauge transformation is given by

ωβ = g−1
αβdgαβ + g−1

αβωαgαβ , (22)

where gαβ : Uα ∩ Uβ −→ G is the transition map and the connection 1-forms
(gauge potentials) ωα takes values in g, the Lie algebra of G. The curvature
(field strength) F is, of course, invariant under the gauge transformation (22)
and is given by (13).

4 Quantum Mechanics of a Charged Particle in
an Electromagnetic Field, as an Abelian Gauge
Theory

In this section we consider a charged particle with charge e described by the
state function ψ : M −→ C. We simply write ∇φ+

as ∇ because that will be
the only covariant derivative we are going to consider hereafter. We also denote
ψφ+ simply by ψφ.

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates
(t, x1, x2, x3), ω can be written as

ω = − ie

�
ρdt− ie

�
Aαdx

α, α = 1, 2, 3

where � is the Dirac constant6. The covariant derivative (15) then becomes

∇ψφ = (dψ + ω)⊗
(

∂

∂z

)

ψ

=

(
∂

∂t
− ie

�
ρ

)
ψ

(
∂

∂z

)

ψ

⊗ dt+

(
∂

∂xα
− ie

�
Aα

)
ψ

(
∂

∂z

)

ψ

⊗ dxα.(23)

Define

∇0 :=

(
∂

∂t
− ie

�
ρ

)
∂

∂z
,

∇α :=

(
∂

∂xα
− ie

�
Aα

)
∂

∂z
, α = 1, 2, 3.

Definition 18. Let
Dj := π ◦ ∇j , j = 0, 1, 2, 3.

That is,

D0=
∂

∂t
− ie

�
ρ, Dα =

∂

∂xα
− ie

�
Aα.

Then Dj is called the projected covariant derivative of ∇j . Equivalently, ∇j is
called the lifted covariant derivative of Dj .

6Also called the reduced Planck constant.
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The converse is also true, namely if {ωα} is a collection of one-forms satisfy-
ing (20) on Uα ∩Uβ �= Ø, then there exists a Hermitian connection ∇ such that
∇êα = ωα ⊗ êα. First define ∇êα = ωα ⊗ êα for each section êα : Uα −→ LM .
On Uα ∩ Uβ �= Ø, (18) holds and it must coincide with ωα ⊗ êα. By (17) and
(20)

ωα ⊗ êα = g−1
αβdgαβ ⊗ êα + ωβ êα

= dgαβ ⊗ (g−1
αβ êα) + ωβ(gαβ êβ)

= dgαβ ⊗ êβ + gαβ∇êβ .

Let ξ ∈ Γ(M,LM) be an arbitrary section. Then ξ|Uα = ξαêα, where ξα :
Uα −→ C. By Leibniz rule

∇ξ|Uα = dξα ⊗ êα + ξα∇êα

= (dξα + ωαξα)⊗ êα. (21)

∇êαµ can be then extended to ∇ξ using (21).
Let Fα be the two-form5

Fα = dωα

defined on Uα. Physically Fα is the field strength relative to the unitary frame
field êα : Uα −→ LM . On Uα ∩ Uβ �= Ø, the gauge potentials ωα and ωβ

are related by the gauge tranformation (20). If Fα and Fβ do not coincide
on Uα ∩ Uβ , it would be again a physically awkward situation. The following
proposition tells that it will not happen.

Proposition 16. Let Fαand Fβ be the field strength relative to the unitary frame
fields êα : Uα −→ LM and êβ : Uβ −→ LM , respectively. If Uα ∩Uβ �= Ø, then
Fα = Fβ on Uα ∩ Uβ.

Proof.

Fα = dωα

= d(g−1
αβdgαβ + ωβ)

= dg−1
αβ ∧ dgαβ + g−1

αβd(dgαβ) + dωβ

= −g−1
αβ (dgαβ)g

−1
αβ ∧ dgαβ + dωβ

= dωβ = Fβ ,

since gαβg
−1
αβ = I and d(dgαβ) = 0.

Physically what Proposition 16 says is that the field strength is invariant
under the gauge transformation (19). The two-forms Fα and Fβ agree on the
intersection of two open sets Uα and Uβ in the cover and hence define a global
two-form. It is denoted by F and is called the curvature of ∇.

5Fα ∈ u(1) and u(1) is a commutative Lie algebra, so [ωα, ωα] = 0.
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Remark 17. In a principal G-bundle, if the structure group G is a matrix Lie
group, the gauge transformation is given by

ωβ = g−1
αβdgαβ + g−1

αβωαgαβ , (22)

where gαβ : Uα ∩ Uβ −→ G is the transition map and the connection 1-forms
(gauge potentials) ωα takes values in g, the Lie algebra of G. The curvature
(field strength) F is, of course, invariant under the gauge transformation (22)
and is given by (13).

4 Quantum Mechanics of a Charged Particle in
an Electromagnetic Field, as an Abelian Gauge
Theory

In this section we consider a charged particle with charge e described by the
state function ψ : M −→ C. We simply write ∇φ+

as ∇ because that will be
the only covariant derivative we are going to consider hereafter. We also denote
ψφ+ simply by ψφ.

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates
(t, x1, x2, x3), ω can be written as

ω = − ie

�
ρdt− ie

�
Aαdx

α, α = 1, 2, 3

where � is the Dirac constant6. The covariant derivative (15) then becomes

∇ψφ = (dψ + ω)⊗
(

∂

∂z

)

ψ

=

(
∂

∂t
− ie

�
ρ

)
ψ

(
∂

∂z

)

ψ

⊗ dt+

(
∂

∂xα
− ie

�
Aα

)
ψ

(
∂

∂z

)

ψ

⊗ dxα.(23)

Define

∇0 :=

(
∂

∂t
− ie

�
ρ

)
∂

∂z
,

∇α :=

(
∂

∂xα
− ie

�
Aα

)
∂

∂z
, α = 1, 2, 3.

Definition 18. Let
Dj := π ◦ ∇j , j = 0, 1, 2, 3.

That is,

D0=
∂

∂t
− ie

�
ρ, Dα =

∂

∂xα
− ie

�
Aα.

Then Dj is called the projected covariant derivative of ∇j . Equivalently, ∇j is
called the lifted covariant derivative of Dj .

6Also called the reduced Planck constant.
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Remark 19. Interestingly, the complex Klein-Gordon field emerges rather natu-
rally in the lifted quantum mechanics model, because the Dj are the gauge-
invariant covariant derivatives of a charged complex Klein-Gordon field. If
we consider ψ not as a quantum state function but as the fusion of two real
fields representing a particle and its antiparticle, then we can obtain electri-
cally charged Klein-Gordon fields by considering a relevant Lagrangian using
the covariant derivatives Dj . See sections 3.9 and 3.10 of [Felsager] for details.

Now we discuss what the covariant derivatives (23) really mean. The Hamil-
tonian of a particle in quantum mechanics is given by

H(r,p) =
p2

2m
+ V (r), (24)

where r is the position operator and p is the momentum operator given by

pα = −i�
∂

∂xα
. (25)

In quantum mechanics, a state ψ evolves in time according to Schrödinger’s
equation

i�
∂ψ

∂t
= Hψ. (26)

Multiplying (23) by −i�, we obtain

−i�∇ψφ = −i�
(

∂

∂t
− ie

�
ρ

)
ψ

(
∂

∂z

)

ψ

⊗dt−i�
(

∂

∂xα
− ie

�
Aα

)
ψ

(
∂

∂z

)

ψ

⊗dxα.

(27)
Intriguingly, (27) appears to be the momentum of lifted state ψφ. Set

Ē = i�
∂

∂t
+ eρ

= E + eρ

and

p̄α = −i�
∂

∂xα
− eAα

= pα − eAα.

Now we are naturally led to the following conjecture:

Conjecture 20. Let

−Edt+ pαdx
α = −i�

∂

∂t
dt+ pαdx

α

be the momentum 4-vector of a particle with charge e when there is no presence
of an electromagnetic field. If an electromagnetic field is introduced with elec-
tromagnetic potential ρdt + Aαdx

α as a background field, then the momentum
4-vector changes to

−Ēdt+ p̄αdx
α = −(E + eρ)dt+ (pα − eAα)dx

α. (28)
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Remark 17. In a principal G-bundle, if the structure group G is a matrix Lie
group, the gauge transformation is given by

ωβ = g−1
αβdgαβ + g−1

αβωαgαβ , (22)

where gαβ : Uα ∩ Uβ −→ G is the transition map and the connection 1-forms
(gauge potentials) ωα takes values in g, the Lie algebra of G. The curvature
(field strength) F is, of course, invariant under the gauge transformation (22)
and is given by (13).

4 Quantum Mechanics of a Charged Particle in
an Electromagnetic Field, as an Abelian Gauge
Theory

In this section we consider a charged particle with charge e described by the
state function ψ : M −→ C. We simply write ∇φ+

as ∇ because that will be
the only covariant derivative we are going to consider hereafter. We also denote
ψφ+ simply by ψφ.

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates
(t, x1, x2, x3), ω can be written as

ω = − ie

�
ρdt− ie

�
Aαdx

α, α = 1, 2, 3

where � is the Dirac constant6. The covariant derivative (15) then becomes

∇ψφ = (dψ + ω)⊗
(

∂

∂z

)

ψ

=

(
∂

∂t
− ie

�
ρ

)
ψ

(
∂

∂z

)

ψ

⊗ dt+

(
∂

∂xα
− ie

�
Aα

)
ψ

(
∂

∂z

)

ψ

⊗ dxα.(23)

Define

∇0 :=

(
∂

∂t
− ie

�
ρ

)
∂

∂z
,

∇α :=

(
∂

∂xα
− ie

�
Aα

)
∂

∂z
, α = 1, 2, 3.

Definition 18. Let
Dj := π ◦ ∇j , j = 0, 1, 2, 3.

That is,

D0=
∂

∂t
− ie

�
ρ, Dα =

∂

∂xα
− ie

�
Aα.

Then Dj is called the projected covariant derivative of ∇j . Equivalently, ∇j is
called the lifted covariant derivative of Dj .

6Also called the reduced Planck constant.
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Remark 19. Interestingly, the complex Klein-Gordon field emerges rather natu-
rally in the lifted quantum mechanics model, because the Dj are the gauge-
invariant covariant derivatives of a charged complex Klein-Gordon field. If
we consider ψ not as a quantum state function but as the fusion of two real
fields representing a particle and its antiparticle, then we can obtain electri-
cally charged Klein-Gordon fields by considering a relevant Lagrangian using
the covariant derivatives Dj . See sections 3.9 and 3.10 of [Felsager] for details.

Now we discuss what the covariant derivatives (23) really mean. The Hamil-
tonian of a particle in quantum mechanics is given by

H(r,p) =
p2

2m
+ V (r), (24)

where r is the position operator and p is the momentum operator given by

pα = −i�
∂

∂xα
. (25)

In quantum mechanics, a state ψ evolves in time according to Schrödinger’s
equation

i�
∂ψ

∂t
= Hψ. (26)

Multiplying (23) by −i�, we obtain

−i�∇ψφ = −i�
(

∂

∂t
− ie

�
ρ

)
ψ

(
∂

∂z

)

ψ

⊗dt−i�
(

∂

∂xα
− ie

�
Aα

)
ψ

(
∂

∂z

)

ψ

⊗dxα.

(27)
Intriguingly, (27) appears to be the momentum of lifted state ψφ. Set

Ē = i�
∂

∂t
+ eρ

= E + eρ

and

p̄α = −i�
∂

∂xα
− eAα

= pα − eAα.

Now we are naturally led to the following conjecture:

Conjecture 20. Let

−Edt+ pαdx
α = −i�

∂

∂t
dt+ pαdx

α

be the momentum 4-vector of a particle with charge e when there is no presence
of an electromagnetic field. If an electromagnetic field is introduced with elec-
tromagnetic potential ρdt + Aαdx

α as a background field, then the momentum
4-vector changes to

−Ēdt+ p̄αdx
α = −(E + eρ)dt+ (pα − eAα)dx

α. (28)
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The Hamiltonian and Schrödinger’s equation would then be replaced by

H̄(r, p̄) =
(p̄)2

2m
+ V (r)

=
1

2m
(pα − eAα)

2 + V (r)

and
Ēψ = H̄ψ.

The following theorem (Theorem (16.34) in [Frankel]) tells that our conjec-
ture is indeed right.

Theorem 21. Let H = H(q, p, t) be the Hamiltonian for a charged particle,
when no electromagnetic field is present. Let an electromagnetic field be intro-
duced with electromagnetic potential A = ρdt + Aαdx

α, α = 1, 2, 3. Define a
new canonical momentum variable p∗ in T ∗M× R by

p∗α := pα + eAα(t, q) (29)

and a new Hamiltonian

H∗(q, p∗, t) := H(q, p, t)− eρ(t, q) = H(q, p∗ − eA, t)− eρ(t, q). (30)

Then the particle of charge e satisfies new Hamiltonian equations

dq

dt
=

∂H∗

∂p∗

dp∗

dt
= −∂H∗

∂q
(31)

dH∗

dt
=

∂H∗

∂t
.

Proof. The theorem can be proved by comparing the solutions of the original
system

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q

and the new system
dq

dt
=

∂H∗

∂p∗
,

dp∗

dt
= −∂H∗

∂q

as seen in [Frankel].

Remark 22. Let λ and Ω denote the Poincaré 1-form and 2-form, respectively,
given by

λ = −Hdt+ pαdx
α,

Ω = dλ = d(−Hdt+ pαdx
α).

11
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Remark 19. Interestingly, the complex Klein-Gordon field emerges rather natu-
rally in the lifted quantum mechanics model, because the Dj are the gauge-
invariant covariant derivatives of a charged complex Klein-Gordon field. If
we consider ψ not as a quantum state function but as the fusion of two real
fields representing a particle and its antiparticle, then we can obtain electri-
cally charged Klein-Gordon fields by considering a relevant Lagrangian using
the covariant derivatives Dj . See sections 3.9 and 3.10 of [Felsager] for details.

Now we discuss what the covariant derivatives (23) really mean. The Hamil-
tonian of a particle in quantum mechanics is given by

H(r,p) =
p2

2m
+ V (r), (24)

where r is the position operator and p is the momentum operator given by

pα = −i�
∂

∂xα
. (25)

In quantum mechanics, a state ψ evolves in time according to Schrödinger’s
equation

i�
∂ψ
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= Hψ. (26)

Multiplying (23) by −i�, we obtain
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⊗dxα.

(27)
Intriguingly, (27) appears to be the momentum of lifted state ψφ. Set
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and
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Now we are naturally led to the following conjecture:
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∂t
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α

be the momentum 4-vector of a particle with charge e when there is no presence
of an electromagnetic field. If an electromagnetic field is introduced with elec-
tromagnetic potential ρdt + Aαdx

α as a background field, then the momentum
4-vector changes to

−Ēdt+ p̄αdx
α = −(E + eρ)dt+ (pα − eAα)dx

α. (28)
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+ V (r)

=
1

2m
(pα − eAα)

2 + V (r)

and
Ēψ = H̄ψ.

The following theorem (Theorem (16.34) in [Frankel]) tells that our conjec-
ture is indeed right.

Theorem 21. Let H = H(q, p, t) be the Hamiltonian for a charged particle,
when no electromagnetic field is present. Let an electromagnetic field be intro-
duced with electromagnetic potential A = ρdt + Aαdx

α, α = 1, 2, 3. Define a
new canonical momentum variable p∗ in T ∗M× R by

p∗α := pα + eAα(t, q) (29)

and a new Hamiltonian

H∗(q, p∗, t) := H(q, p, t)− eρ(t, q) = H(q, p∗ − eA, t)− eρ(t, q). (30)

Then the particle of charge e satisfies new Hamiltonian equations
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=

∂H∗

∂p∗
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(31)

dH∗

dt
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.

Proof. The theorem can be proved by comparing the solutions of the original
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= −∂H
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and the new system
dq
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=
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= −∂H∗
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Remark 22. Let λ and Ω denote the Poincaré 1-form and 2-form, respectively,
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The Hamiltonian and Schrödinger’s equation would then be replaced by

H̄(r, p̄) =
(p̄)2

2m
+ V (r)

=
1

2m
(pα − eAα)

2 + V (r)

and
Ēψ = H̄ψ.

The following theorem (Theorem (16.34) in [Frankel]) tells that our conjec-
ture is indeed right.

Theorem 21. Let H = H(q, p, t) be the Hamiltonian for a charged particle,
when no electromagnetic field is present. Let an electromagnetic field be intro-
duced with electromagnetic potential A = ρdt + Aαdx

α, α = 1, 2, 3. Define a
new canonical momentum variable p∗ in T ∗M× R by

p∗α := pα + eAα(t, q) (29)

and a new Hamiltonian

H∗(q, p∗, t) := H(q, p, t)− eρ(t, q) = H(q, p∗ − eA, t)− eρ(t, q). (30)

Then the particle of charge e satisfies new Hamiltonian equations
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With new momenta p∗α = pα + eAα and new Hamiltonian H∗ = H − eρ, the
Poincaré 1-form can be defined by

λ∗ = −H∗dt+ p∗αdx
α.

Accordingly the Poincaré 2-form is

Ω∗ = dλ∗ = d(−H∗dt+ p∗αdx
α) = Ω + eF,

where F = dA is the electromagnetic field stregth. It can be shown that the
Hamilton’s equations can be simply written as

iXΩ∗ = 0,

where X = ∂
∂t +

dx
dt

∂
∂x + dp

dt
∂
∂p .

If a particle described by ψ has charge e and there is an additional external
electromagnetic field is present, by Theorem 21, the Hamiltonian (24) should
be replaced by

H(r,p∗) =
1

2m
(p∗α − eAα)

2 + V (r)− eρ (32)

and the canonical momenta p∗α should be replaced by p∗α = −i� ∂
∂xα . Accordingly

the Schrödinger’s equation (26) becomes

i�
[
∂

∂t
−
(
ie

�

)
ρ

]
ψ = − �2

2m

[
∂

∂xα
−

(
ie

�

)
eAα

]2
ψ + V ψ (33)

or

i�D0ψ = − �2

2m
DαDαψ + V ψ. (34)

Notice that this is exactly the same equation as the one we conjectured. Al-
though eρ is regarded as a part of the Hamiltonian H∗ in Theorem 21, we
know that eρ can be also regarded as a part of energy operator as discussed in
Conjecture 20.

Conclusion
In this paper, we discussed that by lifting quantum state functions to the holo-
morphic tangent bundle T+(C) we may be able to study quantum mechanics in
terms of Hermitian differential geometry, consistently with the standard quan-
tum mechanics. The proposed lifted quantum mechanics model also offers an
alternative gauge theoretic treatment of quantum mechanics by considering a
complex line bubdle over C instead of the spacetime M . An advantage of the
lifted quantum mechanics model is that when an external electromagnetic field
is introduced, the covariant derivative of a lifted state function naturally gives
rise to new energy and momentum operators for a charged particle resulted from
the presence of the external electromagnetic field. As a result we obtain new
Schrödinger’s equation that describes the motion of a charged particle under
the influence of the external electromagnetic field.
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12Further Questions for Future Research
1. In this paper, we considered quantum mechanics as abelian gauge theory

by introducing electromagnetic field as a backround field. Can we study
quantum mechanics as nonabelian gauge theory, for example SU(2)-gauge
theory by introducing an su(2)-valued field? In that case, ψ needs to be
considered as a spinor-valued map ψ : M −→ C2. If so, what are the
possible physical applications?

2. Can we extend our results for a curved space-time? If so, we may be
able to study the quantum mechanical motion of a charged particle in a
charged (or a rotating) blackhole or a wormhole (J. Wheeler’s problem.
See pp.140–152 of [Baez-Muniain]).
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