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ABSTRACT

QUANTUM MECHANICS AS A GAUGE THEORY

by Joseph Lynn Emfinger

August 2010

In this thesis, we propose an alternative approach to gauge theoretical treatment of

quantum mechanics by lifting quantum state functions to the holomorphic tangent bundle

T+(C).
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Chapter 1

INTRODUCTION

It is well known that quantum mechanics can be treated as a gauge theory by considering
quantum state functions as sections of a complex line bundle over Minkowski spacetime. In
this thesis, we propose an alternative approach to a gauge theoretic treatment of quantum
mechanics. A quantum state function ψ : R3+1 −→ C can be lifted to a map (called a
lifted state) to the holomorphic tangent bundle T+(C), where we regard C as a Hermitian
manifold. The lifted state can be regarded as a holomorphic section (holomorphic vector
field) of T+(C) parametrized by space-time coordinates. The probability density of a lifted
state function is naturally defined by the standard Hermitian metric on C. It turns out that
the probability density of a state function coincides with that of its lifted state. Furthermore
the Hilbert space structure of state functions is solely determined by the Hermitan structure
defined on each fibre T+

p (C) of T+(C). This means that as observables, a state and its lifted
state are not distinguishable, and we may study a quantum mechanical model with lifted
states in terms of Hermitian differential geometry consistently with the standard quantum
mechanics. Interestingly, in the proposed model, a charged complex Klein-Gordon field
emerges naturally when ψ is considered as the fusion of two real fields representing a
particle and its antiparticle. An important advantage of the lifted quantum mechanics model
is that when an external electromagnetic field is introduced, the covariant derivative of
a lifted state function naturally gives rise to new energy and momentum operators for a
charged particle resulted from the presence of the external electromagnetic field. As a result
we obtain a new Schrödinger’s equation that describes the motion of a charged particle under
the influence of the external electromagnetic field.

Chapters 2 and 3 are included in this thesis as preliminaries. In chapter 2, we briefly
review basic Differential Geometry, especially Complex Manifolds, Hermitian Manifolds,
and Fibre Bundles. Chapter 2 contains results mainly from [7] and [6]. In chapter 3, we
briefly review some basics on Lagragian and Hamiltonian Mechanics. Most discussions
in chapter 3 came from [3]. In chapter 4, we discuss main results from our research. As
an application, we discuss quantum mechanics of a charged particle in an electromagnetic
background field, as an abelian gauge theory (U(1)-gauge theory): In conclusion, we
summarize our results and their significance. We also list some possibly interesting questions
for future research, as applications of the proposed lifted quantum mechanics.
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Chapter 2

SOME BASIC DIFFERENTIAL GEOMETRY

In this chapter, we briefly review some basic differential geometry. In particular, we
review some basics in complex manifolds, Hermitian manifolds, and fibre bundles, that are
necessary for our main discussions in chapter 4. The notions and results we mention in this
chapter mostly come from [7] and [6].

2.1 Complex Manifolds

Definition 2.1.1. A map f : Cm −→ C is said to be holomorphic if f = f1 + i f2 satisfies
the Cauchy-Riemann equations:

∂ f1

∂xµ
=

∂ f2

∂yµ
,

∂ f2

∂xµ
=− ∂ f1

∂yµ
(2.1)

where zµ = xµ + iyµ , µ = 1,2, · · · ,m are the coordinates of Cm. A map ( f 1, f 2, · · · , f n) :
Cm −→ Cn is said to be holomorphic if each coordinate function f α , α = 1,2, · · · ,n is
holomorphic.

A map f : Cm −→ C is said to be anti-holomorphic if its conjugation f̄ is holomorphic.

In Cm, it is often more convenient to use complex coordinates zµ , z̄µ instead of real
coordinates. By the chain rule one finds

∂

∂ zµ
=

1
2

(
∂

∂xµ
− i

∂

∂yµ

)
,

∂

∂ z̄µ
=

1
2

(
∂

∂xµ
+ i

∂

∂yµ

)
. (2.2)

Proposition 2.1.1. A map f : Cm −→ C is holomorphic if and only if ∂ f
∂ z̄µ = 0, µ =

1,2, · · · ,m. A map f : Cm −→ C is anti-holomorphic if and only if ∂ f
∂ zµ = 0, µ = 1,2, · · · ,m.

Definition 2.1.2. A topological space M is a complex manifold if it satisfies the following
conditions:

1. For any p ∈M there exists a neighborhood U(p)⊂M which is homeomorphic to Cm.
Denote by φ the homeomorphism between U(p) and Cm. Then U(p) and φ are called
the coordinate neighborhood and the coordinate map of p ∈M. The pair (U(p),φ) is
called a chart. Clearly the space M is covered by such charts, and we can see that M

needs to be even dimensional.
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2. Given coordinate neighborhoods Ui and U j with Ui∩U j 6= /0, the change of coordinate
maps φi j = φ j ◦φ

−1
i : Ui −→U j and φ ji = φi ◦φ

−1
j : U j −→Ui are holomorphic.

The number m is called the complex dimension of M and is denoted by dimCM = m. The
real dimension 2m is denoted either by dimRM = 2m or simply by dimM = 2m.

Example 2.1.2. Cm is a complex manifold of (complex) dimension m. It has a single chart

(Cm, ıd).

Example 2.1.3. The 2-sphere S2 is a complex manifold of (complex) dimension 1: Let

UN = S2 \N and US = S2 \ S, where N = (0,0,1) and S = (0,0,−1). Let ϕN : UN −→ C
and ϕS : US −→ C denote the stereographic projections from the north pole and the south

pole, respectively. Then1

ϕN(x1,x2,x3) =
x1

1− x3 + i
x2

1− x3 ,

ϕS(x1,x2,x3) =
x1

1+ x3 − i
x2

1+ x3 .

The inverse stereographic projection ϕ
−1
N : C−→UN is given by

ϕ
−1
N (z) =

(
2Rez
|z|2 +1

,
2Imz
|z|2 +1

,
|z|2−1
|z|2 +1

)
, z ∈ C.

Now the change of coordinate map ϕS ◦ϕ
−1
N : C−→ C is given by

ϕS ◦ϕ
−1
N (z) =

1
z
, z ∈ C,

which is a holomorphic map.

One may wonder if the sphere S2n is a complex manifold for all n. First, the following
proposition holds. This proposition can be proved straightforwardly using the stereographic
projections from the north pole and the south pole as seen in Example 2.1.3.

Proposition 2.1.4. If S2n has the only one complex structure, then n = 1.

In fact , it is known that S2 has indeed only one complex structure. (See for instance
[5].) Furthermore, it is also known that

Theorem 2.1.5. S2n has an almost complex structure2 if and only if n = 1 or n = 3.

1We changed the sign of the x2 coordinate in ϕS(x1,x2,x3) in order to make the change of coordinate map
holomorphic. Otherwise, it will be anti-holomorphic.

2The definition of almost complex structure follows below.
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It is still an open problem whether S6 admits a complex structure.
The differential operators in (2.2) form a basis of the tangent space TpMC. Correspond-

ingly the 2m 1-forms
dzµ = dxµ + idyµ , dz̄µ = dxµ − idyµ (2.3)

form the basis of the cotangent space T ∗p MC.
Let us define a linear map Jp : TpM −→ TpM by

Jp

(
∂

∂xµ

)
=

∂

∂yµ
, Jp

(
∂

∂yµ

)
=− ∂

∂xµ
. (2.4)

Then
J2

p =−1p (2.5)

where 1p is the identity map on TpM. As a matrix, Jp can be written as

Jp =

(
O −1
1 O

)
.

The map J is called the almost complex structure of a complex manifold M.
From equation (2.5), we see that the linear map Jp has two complex eigenvalues, ±i.

Denote by TpM+ and TpM−the eigenspaces corresponding to the eigenvalues i and −i,
respectively; that is,

TpM± = {Z ∈ TpMC : JpZ =±iZ}.

Then
TpMC = TpM+⊕TpM−.

Note that if Z = Zµ ∂

∂ zµ , then JpZ = iZ, i.e. Z is an eigenvector of Jp corresponding to i. If
Z = Zµ ∂

∂ z̄µ , then JpZ =−iZ, i.e. Z is an eigenvector of Jp corresponding to −i.

2.2 Hermitian Manifolds and Kähler Manifolds

Let M be a complex manifold with dimCM = m and g be a Riemannian metric of M as a
differentiable manifold. Let Z = X + iY, W =U + iV ∈ TpMC and extend g so that

gp(Z,W ) = gp(X ,U)−gp(Y,V )+ i[gp(X ,V )+gp(Y,U)].
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The components of g with respect to the basis (2.2) are

gµν(p) = gp

(
∂

∂ zµ
,

∂

∂ zν

)
,

gµν̄(p) = gp

(
∂

∂ zµ
,

∂

∂ z̄ν

)
,

gµ̄ν(p) = gp

(
∂

∂ z̄µ
,

∂

∂ zν

)
,

gµ̄ ν̄(p) = gp

(
∂

∂ z̄µ
,

∂

∂ z̄ν

)
.

These then satisfy

gµν = gνµ , gµ̄ ν̄ = gν̄ µ̄ , gµ̄v = gνµ̄ , gµν̄ = gµ̄ν , gµν = gµ̄ ν̄ . (2.6)

Definition 2.2.1. If a Riemannian metric g of a complex manifold M satisfies

gp(JpX ,JpY ) = gp(X ,Y ) (2.7)

at each point p ∈M and for any X ,Y ∈ TpM, then g is said to be a Hermitian metric. The
pair (M,g) is called a Hermitian manifold.

Remark 2.2.1. JpX is always orthogonal to X with respect to a Hermitian metric, because

gp(JpX ,X) = gp(J2
pX ,JpX) =−gp(X ,JpX) =−gp(JpX ,X).

Theorem 2.2.1. A complex manifold always admits a Hermitian metric.

Example 2.2.2. Let Cn be the n-copies C×·· ·×C of the complex field C with coordinates

(z1, · · · ,zn). Define a metric g on Cn by

g = dzµ ⊗dz̄µ . (2.8)

Then (Cn,g) is a Hermitian manifold of (complex) dimension n.

Let (M,g) be a Hermitian manifold. Then

gµν = g
(

∂

∂ zµ
,

∂

∂ zν

)
= g

(
J
(

∂

∂ zµ

)
,J
(

∂

∂ zν

))
= −g

(
∂

∂ zµ
,

∂

∂ zν

)
= −gµν .
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Thus gµν = gµ̄ ν̄ = 0. Hence the Hermitian metric g takes the form

g = gµν̄dzµ ⊗dz̄ν +gµ̄νdz̄µ ⊗dzν .

Define a 2-form (a tensor field) Ω acting on X ,Y ∈ TpM given by

Ωp(X ,Y ) = gp(JpX ,Y ). (2.9)

Then Ω is antisymmetric, i.e. Ω(X ,Y ) =−Ω(Y,X). Now,

Ω(JX ,JY ) = g(J2X ,JY ) = g(J3X ,J2Y ) = g(JX ,Y ) = Ω(X ,Y ).

So Ω is invariant under the action of J. The tensor field (or 2-form) Ω is called the Kähler

form of a Hermitian metric g.

Proposition 2.2.3. The Kähler form Ω of a Hermitian metric g can be written as

Ω = igµν̄dzµ ∧dz̄ν . (2.10)

2.3 Fibre Bundles

Fibre bundles are, roughly speaking, topological spaces that are locally product spaces.
More precisely they are defined as follows:

Definition 2.3.1. A fibre bundle is an object (E,M,F,π) consisting of

1. The total space E.

2. The base space M with an open covering U= {Uα}α∈A.

3. The fibre F and the projection map π : E −→M.

The simplest case of a fibre bundle would be when the total space E is given by the product
space E = M×F . In this case, the bundle is called a trivial bundle. In general , the total
space may just be too complicated for us to understand. So it would be nice if we could
always find small parts of E that are simple enough for us to understand, say simply product
spaces. For this reason we want the fibre bundle to have the following property as well: for
each Uα ∈ U, there is a homeomorphism hα : π−1(Uα)−→Uα ×F which is called a local

trivialization. For each x ∈M, Fx := π−1(x) is homeomorphic to {x}×F . Fx is called the
fibre of x. Let x ∈Uα ∩Uβ 6= /0. The fibre Fα

x of x as a subset of π−1(Uα) may not be the
same as the fibre Fβ

x of x as a subset of π−1(Uβ ); however, the two fibres Fα
x and Fβ

x are
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homeomorphic to each other. Denote by hαβ (x) the homeomorphism from Fα
x to Fβ

x . In
fact, for each x ∈M, hαβ (x) is a homeomorphism from F to itself, i.e. hαβ (x) ∈ Aut(F).
The map hαβ : Uα ∩Uβ −→ Aut(F) is called a transition map. For each Uα ,Uβ ∈ U with
Uα ∩Uβ 6= /0, the map

hα ◦h−1
β

: (Uα ∩Uβ )×F −→ (Uα ∩Uβ )×F

satisfies
hα ◦h−1

β
(x, f ) = (x,hαβ (x)( f ))

for x ∈Uα ∩Uβ and f ∈ F .
Let M be a differentiable manifold of dimension n. Consider an atlas U = {Uα}α∈A

along with coordinates x1
α , · · · ,xn

α in Uα . For x = (x1
α(x), · · · ,xn

α(x)) ∈Uα , a tangent vector
v ∈ TxM is given by

v =
n

∑
j=1

v j
α

∂

∂x j
α

.

If x ∈Uα ∩Uβ , then v is also written as

v =
n

∑
j=1

v j
β

∂

∂x j
β

.

Here the change of coordinates is given by

v j
β
= vx j

β
=

n

∑
k=1

vk
α

∂x j
β

∂xk
α

.

For x ∈Uα ∩Uβ and f = ( f 1, · · · , f n) ∈ Rn, define

hαβ (x)( f ) =

(
n

∑
k=1

∂x1
β

∂xk
α

f k, · · · ,
n

∑
k=1

∂xn
β

∂xk
α

f k

)

=


∂x1

β

∂x1
α

· · ·
∂x1

β

∂xn
α

... . . . ...
∂xn

β

∂x1
α

· · ·
∂xn

β

∂xn
α


 f1

...
fn

 .

Hence, hαβ : Uα ∩Uβ −→ Aut(Rn). The resulting bundle over M with fibre F = Rn is
called the tangent bundle of M and is denoted by T M. Note that T M can also be regarded as
the set of all tangent vectors of M, i.e.

T M =
⋃

x∈M

TxM.
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For each x ∈Uα , the fibre π−1(x) of x ∈M is TxRn ∼= {x}×Rn. The local trivialization map
hα : π−1(Uα)−→Uα ×Rn is given by

hα(v) = (x,(v1
α , · · · ,vn

α)), v ∈ TxUα(= TxM), x ∈Uα .

A fibre bundle (E,M,F,π) is called a vector bundle3 over M if each fibre Fx of x∈M is a vec-
tor space. So tangent bundles are vector bundles. The tangent bundle T M is also a differen-
tiable manifold of dimension 2n with local coordinates in π−1(Uα), (x1

α , · · · ,xn
α ,v

1
α , · · · ,vn

α).
The Jacobian is given by

J(x1
β
, · · · ,xn

β
;x1

α , · · · ,xn
α) =

∂ (x1
β
, · · · ,xn

β
)

∂ (x1
α , · · · ,xn

α)

=


∂x1

β

∂x1
α

· · ·
∂x1

β

∂xn
α

... . . . ...
∂xn

β

∂x1
α

· · ·
∂xn

β

∂xn
α

 : Uα ∩Uβ −→ GL(n,R),

where GL(n,R) denotes the general linear group, the group of linear isomorphisms from
Rn to itself. In terms of matrices, GL(n,R) is the group of all n× n non-singular matri-
ces with real entries. It should be noted that GL(n,R) is also a Lie group. Let gαβ :=
J(x1

β
, · · · ,xn

β
;x1

α , · · · ,xn
α). Then gαβ satisfies

gαα(x) = In,

gβα(x) = g−1
αβ

(x),

gαβ (x)gβγ(x)gγα(x) = In, x ∈Uα ∩Uβ .

The third property is called the Ĉech cocycle condition. The Lie group GL(n,R) acts on the
fibre Rn by

hαβ (x)( f ) = gαβ (x) · f , x ∈Uα ∩Uβ , f ∈ Rn.

In general, if the transition map hαβ is the group action of a Lie group G on the fibre F , then
the fibre bundle (E,M,F,π) is called a G-bundle and the Lie group G is called a structure

group4. In particular, if the fibre itself is a Lie group, the G-bundle is called a principal G-

bundle. Given a G-bundle (E,M,F,π) with structure group G, one can construct a principal
G-bundle P(E) associated with E by replacing F with G and regarding gαβ as transition
maps. The tangent bundle T M can be regarded as a principal G-bundle with structure group

3This is a rough definition. We additionally require each hαβ (x) : F −→ F to be a linear isomorphism.
4Physicists often call structure groups gauge groups. But we actually mean gauge group by the group of all

gauge transformations.
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GL(n,R). The tangent bundle T M discussed here is a real vector bundle, since each fibre
TxM is a real vector space, i.e. a vector space over R. Similarly, a vector bundle such that
each fibre Fx is a complex vector space is called a complex vector bundle. In particular,
if each fibre Fx is a one-dimensional complex vector space, the complex vector bundle is
called a (complex) line bundle.

A section s of a vector bundle is like a vector field. It is a map s : M −→ E such that
s(x) ∈ Fx or equivalently π ◦ s(x) = x. From this definition clearly the section of a vector
bundle is one-to-one.

Example 2.3.1. Consider the trivial bundle L = M×C. Every section s looks like s(x) =

(x, f (x)) for some function f .

Example 2.3.2. For a tangent bundle T M, sections are vector fields

s : M −→ T M

x 7−→ vx ∈ TxM.

For the tangent bundle T S2 over S2, one can think of a section as a map s : S2 −→ T S2 such

that 〈s(x),x〉= 0 for each x ∈ S2.

The existence of sections and the triviality of bundles are closely related, as stated in the
following theorem. This relationship is also very important in physics.

Theorem 2.3.3. The bundles E and P(E) are trivial if and only if P(E) has a section.

Regarding the triviality of bundles, it is also important to note that:

Theorem 2.3.4. If the base space M is simply connected5, then the fibre bundle (E,M,F,π)

is a trivial bundle.

5That is, the fundamental group of M is the trivial group, π1(M) = 0.
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Chapter 3

LAGRANGIAN AND HAMILTONIAN MECHANICS

In this chapter, we briefly review some basics on Lagrangian and Hamiltonian mechanics.
The notions and results mentioned in this chapter mostly come from [3].

3.1 Lagrangian Mechanics

Let Mn be the configuration space of a dynamical system, and let q1, · · · ,qn be local
generalized coordinates. The Lagragian is a function of the generalized coordinates q and
the generalized velocities q̇ = dq

dt , denoted by L(q, q̇). It is important to note that q and q̇

are 2n-independent coordinates. So L can be considered as a real-valued function on the
tangent bundle to Mn

L : T Mn −→ R.

To discuss Hamiltonian formalism of classical mechanics later, we need to introduce vari-
ables pi defined by

pi(q, q̇) =
∂L
∂ q̇i . (3.1)

The pi’s are called the generalized momenta. p is indeed a map

p : T Mn −→ T ∗Mn,

where T ∗Mn is the cotangent bundle to Mn, i.e. the space of cotangent vectors. p is bijective,
and it can be made to an immersion by requiring that

det
(

∂ pi

∂ q̇i

)
6= 0, (3.2)

or equivalently

det
(

∂ 2L
∂ q̇ j∂ q̇i

)
6= 0. (3.3)

As a result, p : T Mn −→ T ∗Mn is a diffeomorphism. Usually there is no natural way
to identify tangent vectors on Mn with cotangent vectors on Mn. But by introducing a
Lagrangian function L, we manage to establish such an identification, ġ j ∂

∂q j
p−→ ∂L

∂ q̇ j dq j.
One must note that the identification changes with a change of L, i.e. a change of dynamics.
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The ordered 2n-tuple (q1, · · · ,qn; p1, · · · , pn) is called the local coordinates for T ∗Mn. In
mechanics, the cotangent bundle T ∗Mn to the configuration space T Mn is called the phase

space of the dynamical system.
Frequently the Lagrangian is of the form

L(q, q̇) = T (q, q̇)−V (q) (3.4)

where T is the kinetic energy and V is the potential energy. V is usually independent of q̇

and T is frequently a positive definite symmetric quadratic form in the velocities

T (q, q̇) =
1
2

g jk(q)q̇ jq̇k. (3.5)

Thus the momentum p in (3.1) can be written as

p =
∂L
∂ q̇i =

∂T
∂ q̇i = gi j(q)q̇ j. (3.6)

If we consider 2T as a Riemannian metric on the configuration space Mn

〈q̇, q̇〉= gi j(q)q̇iq̇ j,

then the kinetic energy represents half the length squared of the velocity vector.

Example 3.1.1. Let M = R2. Then T M = R4. Consider two masses m1 and m2 moving in

one dimension. Then the kinetic energy is given by

T =
1
2

m1(q̇1)
2 +

1
2

m2(q̇2)
2

which is of the form in (3.6) by introducing the mass matrix

(gi j) =

(
m1 0
0 m2

)
.

3.2 The Poincaré 1-Form and 2-Form

We define the Poincaré 1-form λ by λ = pidqi in the phase space T ∗Mn. It is well-defined
on every cotangent bundle T ∗Mn as seen in the following theorem.

Theorem 3.2.1. There is a globally defined 1-form on every cotangent bundle T ∗Mn, the

Poincaré 1-form λ . In local coordinates (q, p) it is given by

λ = pidqi. (3.7)

Having the Poincaré 1-form λ , we can also define the Poincaré 2-form by

Ω = dλ = d pi∧dqi. (3.8)

This form plays a very important role in Hamiltonian mechanics.
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3.3 Hamiltonian Mechanics and Symplectic Geometry

We begin this section by introducing the interior product.

Definition 3.3.1. If v is a vector and α is a p-form, their interior product (p−1)-form ivα

is defined recursively by
ivα = 0 if α is a 0-form

ivα = α(v) if α is a 1-form

ivα(w2, · · · ,wp) = α(v,w2, · · · ,wp) if α is a p-form.
Let us denote by

∧p the vector space of p-forms. Then given a vector v, the interior
product iv is a linear map iv :

∧p −→
∧p−1. Since forms are linear, we have iA+B = iA + iB

and iaA = aiA. ivα is sometimes written as i(v)α .

iv :
∧p −→

∧p−1 is an antiderivation:

Proposition 3.3.1. iv(α p ∧ β q) = [ivα p]∧ β q + (−1)pα p ∧ [ivβ q], where α p denotes a

p-form.

Definition 3.3.2. A 2-form Ω on an even dimensional manifold M2n is called symplectic if
it satisfies

1. Ω is closed, i.e. dΩ = 0.

2. Ω is nondegenerate, i.e. the linear transformation associating to a vector X the 1-form
iXΩ is nonsingular.

(M2n,Ω) is called a symplectic manifold.

Example 3.3.2. The Poincaré 2-form (3.8) is a symplectic form. So every cotangent bundle

is a symplectic manifold.

Let L = L(q, q̇) be a time-independent Lagrangian. We have a map p : T M −→ T ∗M

given by qi = qi and pi =
∂L
∂ q̇i . As mentioned earlier we take this map as a diffeomorphism

by requiring (3.2) or (3.3).

Definition 3.3.3. The Hamiltonian function H : T ∗M −→ R is defined by

H(q, p) = piq̇i−L(q, q̇). (3.9)
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Proposition 3.3.3. The Euler-Lagrange equations, ∂L
∂qi − d

dt

(
∂L
∂ q̇i

)
= 0 in T M, translate to

Hamilton’s equations in the phase space T ∗M

dqi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂qi . (3.10)

Let X be a time-independent vector field on T ∗M,

X = X i ∂

∂qi +X i+n ∂

∂ pi
.

Then the integral curve of X, i.e. the solutions to

dqi

dt
= X i and

d pi

dt
= X i+n

satisfy Hamilton’s equations (3.10) if and only if the vector field X satisfies

iXΩ =−dH. (3.11)

The equation (3.11) is also referred to as Hamilton’s equations and X is called a Hamiltonian

vector field.

Let us now consider a time-dependent Hamiltonian H = H(q, p, t). H is considered as a
function on the extended phase space T ∗M×R. Hamilton’s equations are again (3.10) but
note that

dH
dt

=

(
∂H
∂qi

)
dqi

dt
+

(
∂H
∂ pi

)
d pi

dt
+

∂H
∂ t

.

We introduce new Poincaré forms

λ = pidqi−Hdt, (3.12)

Ω = dλ = d pi∧dqi−dH ∧dt. (3.13)

Let us consider a time-dependent vector field on T ∗M×R of the form

X = X i ∂

∂qi +X i+n ∂

∂ pi
+

∂

∂ t
.

Along the integral curves of X, we have

X =

(
dqi

dt

)
∂

∂qi +

(
d pi

dt

)
∂

∂ pi
+

∂

∂ t
. (3.14)

Proposition 3.3.4. The integral curve X (3.14) satisfies Hamilton’s equations (3.10) if and

only if

iX Ω = 0. (3.15)

Such X is again called a Hamiltonian vector field and it is

X =

(
dH
d pi

)
∂

∂qi −
(

dH
dqi

)
∂

∂ pi
+

∂

∂ t
. (3.16)
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Chapter 4

QUANTUM MECHANICS AS A GAUGE THEORY

Now, we discuss our main results in this chapter.

4.1 A Parametrized Vector Field as a Quantum State Function

Here we regard C as a Hermitian manifold of complex dimension one with the Hermitian
metric (2.8). Let R3+1 be the Minkowski 4-spacetime, which is R4 with coordinates
(t,x1,x2,x3) and Lorentz-Minkowski metric

ds2 =−dt2 +(dx1)2 +(dx2)2 +(dx3)2.

Hereafter, we simply denote R3+1 by M. In quantum mechanics, a particle is described by a
complex-valued wave function, a so-called state function, ψ : M−→ C. The states ψ of
a quantum mechanical system form an infinite dimensional complex Hilbert space H. In
quantum mechanics the probability that a wave function ψ exists inside volume V ⊂M is
given by ∫

V
ψ
∗
ψd3x,

where ψ∗ denotes the complex conjugation of ψ . Since there is no reason for C to be the
same complex vector space everywhere in the universe, rigorously ψ should be regarded
as a section of a complex line bundle over M. When we do physics, we require sections
(fields) to be nowhere vanishing, so the vector bundle is indeed a trivial bundle over M, i.e.
M×C. This kind of rigorous treatment of state functions is needed to study gauge theory
and geometric quantization.

On the other hand, let φ : C −→ T (C) be a vector field, where T (C) =
⋃

p∈CTp(C)
is the tangent bundle1 of C. The composite function ψφ := φ ◦ψ : M −→ T (C) is a lift
of ψ to T (C) since any vector field is a section of the tangent bundle T (C). Here we
propose to study quantum mechanics by considering the lifts as state functions. The lifts
can be regarded as vector fields, i.e. sections of tangent bundles, parametrized by spacetime
coordinates. This way, we can directly connect the Hilbert space structure on the space of
states and the Hermitian metric on C, i.e. in a mathematical point of view, extending the

1Since each fibre Tp(C) is a one-dimensional complex vector space, T (C) is a complex line bundle.
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notion of states as the lifts may allow us to study quantum mechanics not only in terms of
functional analysis (as theory of Hilbert spaces), but also in terms of differential geometry
(as a gauge theory).

Definition 4.1.1. The probability of getting a particle described by a wave function ψ inside
volume V is called the expectation2 of ψ inside V .

Definition 4.1.2. Let ψ ′ : M−→ T (C) be a state3. The expectation of ψ ′ inside volume V

is defined by ∫
V

g(ψ ′,ψ ′)d3x, (4.1)

where g is the Hermitian metric (2.8) on C.

Clearly there are infinitely many choices of the lifts of ψ . Among them we are interested
in a particular lift. In order to discuss that, let φ : C−→ T (C) be a vector field defined in
terms of real coordinates by

φ(x,y) = x
∂

∂x
+ y

∂

∂y
. (4.2)

In terms of complex variables, (4.2) is written as

φ(z, z̄) = z
∂

∂ z
+ z̄

∂

∂ z̄
, (4.3)

where φ is viewed as a map from C into the complexified tangent bundle of C, φ : C−→
T (C)C :=

⋃
p∈CTp(C)C. Note that T (C)C= T+(C)⊕T−(C) where T+(C)=

⋃
p∈CT+

p (C)
and T−(C) =

⋃
p∈CT−p (C) are, respectively, holomorphic and anti-holomorphic tangent

bundles of C. It should be noted that the holomorphic tangent bundles are holomorphic
vector bundles.

Definition 4.1.3. Let E and M be complex manifolds and π : E −→M a holomorphic onto
map. E is said to be a holomorphic vector bundle if

1. The typical fibre is Cn and the structure group is GL(n,C);

2. The local trivialization φα : Uα ×Cn −→ π−1(Uα) is a biholomorphic map;

3. The transition map hαβ : Uα ∩Uβ −→ GL(n,C) is a holomorphic map.

2This should not confused with the expectation value or expected value in probability and statistics.
3Not every map ψ ′ : M−→ T (C) is regarded as a state function. This will be clarified in the following

discussion.
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Now,

ψφ (r, t) := φ ◦ψ(r, t)

= ψ(r, t)
(

∂

∂ z

)
ψ(r,t)

+ ψ̄(r, t)
(

∂

∂ z̄

)
ψ(r,t)

∈ T (C)C.

Recalling that g
(

∂

∂ z ,
∂

∂ z

)
= g

(
∂

∂ z̄ ,
∂

∂ z̄

)
= 0 and g

(
∂

∂ z ,
∂

∂ z̄

)
= 1

2 , we obtain

∫
V

g(ψφ ,ψφ )d3x =
∫

V
ψψ

∗d3x.

Thus we have that the following proposition holds:

Proposition 4.1.1. Any state function ψ : M−→C can be lifted to ψ ′ : M−→ T (C)C such

that ∫
V

g(ψ ′,ψ ′)d3x =
∫

V
ψψ

∗d3x. (4.4)

Physically the state functions ψ themselves are not observables but the distributions
|ψ|2 are. So the probabilities

∫
V |ψ|2d3x are also observables. Hence, as long as both the

state functions and their lifts have the same probabilities, we may study quantum mechanics
with the lifted state functions consistently with standard quantum mechanics.

Definition 4.1.4. A map ψ ′ : M−→ T (C)C is called a lifted (quantum) state function if∫
V

g(ψ ′,ψ ′)d3x =
∫

V
(π ◦ψ

′)(π ◦ψ
′)∗d3x. (4.5)

Example 4.1.2. The map ψ ′ : M−→ T (C)C given by

ψ
′(r, t) = Aei(k·r−ωt) ∂

∂ z
+ Āe−i(k·r−ωt) ∂

∂ z̄
(4.6)

is a lifted state function. Note that ψ := π ◦ψ ′ = Aei(k·r−ωt) is a well-known de Broglie
wave, a plane wave that describes the motion of a free particle with momentum p = kh̄, in

quantum mechanics [4]. Also note that ψ ′ = ψφ where φ is the vector field given in (4.3).

4.2 The Holomorphic Tangent Bundle T+(C) and Hermitian Connection

From now on we will only consider a fixed vector field φ given in (4.3). Denote by φ+ and
φ− the holomorphic and the anti-holomorphic parts, respectively. Since φ− = φ+, without
loss of generality we may only consider the lifts ψφ+ : M −→ T+(C). One can define
an inner product, called a Hermitian structure, on the holomorphic tangent bundle T+(C)
induced by the Hermitian metric g in (2.8):
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Definition 4.2.1. We mean a Hermitian structure by an inner product on a holomorphic
vector bundle π : E −→M of a complex manifold M whose action at p∈M is hp : π−1(p)×
π−1(p)−→ C such that

1. hp(u,av+bw) = ahp(u,v)+bhp(u,w) for u,v,w ∈ π−1(p), a,b ∈ C,

2. hp(u,v) = hp(v,u), u,v ∈ π−1(p),

3. hp(u,u)≥ 0;hp(u,u)= 0, if and only if u= h−1
α (p,0), where hα : π−1(Uα)−→Uα×

Cn is a (biholomorphic) local trivialization.

4. h(s1,s2) is a complex-valued smooth function on M for s1,s2 ∈ Γ(M,E), where
Γ(M,E) denotes the set of sections of the holomorphic vector bundle π : E −→M.

The following proposition is straightforward.

Proposition 4.2.1. For each p ∈ C, define hp : T+
p (C)×T+

p (C)−→ C by

hp(u,v) = gp(u, v̄) for u,v ∈ T+
p (C).

Then h is a Hermitian structure on T+(C).

Definition 4.2.2. The expectation of ψφ inside volume V ⊂M is defined simply by∫
V

h(ψφ+,ψφ+)d3x. (4.7)

Remark 4.2.1. Note that∫
V

h(ψφ+,ψφ+)d3x =
∫

V
g(ψφ ,ψφ )d3x =

∫
V

ψψ
∗d3x.

For an obvious reason, we would like to differentiate sections. If we cannot differentiate
sections (fields), we cannot do physics. Let E −→M be a vector bundle and s : E −→M a
section. Let γ : (−ε,ε)−→M be a path through γ(0) = m. The conventional definition of
the rate of change of s in the direction tangent to γ at m is

lim
t→0

s(γ(t))− s(γ(0))
t

.

However, this definition makes no sense at all, because s(γ(t)) ∈ Fγ(t) and s(γ(0)) ∈ Fγ(0),
and we cannot perform the required subtraction s(γ(t))− s(γ(0)). Hence we need to come
up with an alternative way to differentiate sections. It turns out that there is no unique way to
differentiate sections and one needs to make a choice of differentiation depending on one’s
purpose. Differentiation of sections of a bundle can be done by introducing the notion of a
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connection. Here we particularly discuss a Hermitian connection. Denote by Γ(M,E) the
set of all sections s : M −→ E. Also denote by F(M)C the set of complex-valued functions
on M. Given a Hermitian structure h, we can define a connection which is compatible with
h.

Definition 4.2.3. Given a Hermitian structure h, we mean a Hermitian connection ∇ by a
linear map ∇ : Γ(M,E)−→ Γ(M,E⊗T ∗MC) such that

1. ∇( f s) = (d f )⊗ s+ f ∇s, f ∈ F(M)C, s ∈ Γ(M,E). This is called the Leibniz rule.

2. d[h(s1,s2)] = h(∇s1,s2)+h(s1,∇s2). Due to this condition, we say that the Hermitian
connection ∇ is compatible with Hermitian structure h.

3. ∇s = Ds+ D̄s, where Ds and D̄s, respectively, are a (1,0)-form and a (0,1)-form. It
is demanded that D̄ = ∂̄ , where ∂̄ is the Dolbeault operator.

Regarding a Hermitian connection, we have that the following important property holds:

Theorem 4.2.2. Let M be a Hermitian manifold. Given a holomorphic vector bundle

π : E −→M and a Hermitian structure h, there exists a unique Hermitian connection.

Definition 4.2.4. A set of sections {ê1, · · · , êk} is called a unitary frame if

h(êµ , êν) = δµν . (4.8)

Associated with a tangent bundle T M over a manifold M is a principal bundle called
the frame bundle LM =

⋃
p∈M LpM, where LpM is the set of frames at p ∈M. Note that

the unitary frame bundle LM is not a holomorphic vector bundle because the structure
group U(n) is not a complex manifold. Let {ê1, · · · , êk} be a unitary frame. Define the local
connection one-form4 ω = (ων

µ ) by

∇êµ = ω
ν
µ ⊗ êν . (4.9)

By a straightforward calculation, we obtain

Proposition 4.2.3.
∇

2êµ = ∇∇êµ = Fν
µ êν . (4.10)

The curvature of the Hermitian connection ∇ or, physically, the field strength is defined
by the 2-form

F = dω +
1
2

ω ∧ω. (4.11)

It follows from the definition of the Hermitian connection that:
4Physicists usually call it the gauge pontential.
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Proposition 4.2.4. Both the connection form ω and the curvature F are skew-Hermitian,

i.e. ω, F ∈ u(n) where u(n) is the Lie algebra of the unitary group U(n).

In terms of the Lie bracket [ , ] defined on u(n), (4.11) can be written as

F = dω +[ω,ω]. (4.12)

By Theorem 4.2.2, there exists uniquely a Hermitian connection ∇ : Γ(C,T+(C))−→
Γ(C,T+(C)⊗T ∗(C)C). Let Hφ+ be the set of all lifted state functions ψφ+ : M−→ T+(C).
Endowed with the inner product induced by the Hermitian structure h, Hφ+ becomes an
infinite dimensional complex Hilbert space.

Now

∇φ
+ = ∇

(
z

∂

∂ z

)
= dz⊗ ∂

∂ z
+ z∇

(
∂

∂ z

)
= dz⊗ ∂

∂ z
+ω⊗ ∂

∂ z

= (dz+ω)⊗ ∂

∂ z
, (4.13)

where ω ∈ u(1) is the connection one-form. Using the formula (4.13), we can define a
covariant derivative ∇φ+

: Hφ+ −→ Γ(C,T+(C)⊗T ∗(C)C):

∇
φ+

ψφ+ = (dψ +ψω)⊗ ∂

∂ z
. (4.14)

Using formula (4.14), we can now differentiate our lifted state functions. This means we can
do quantum mechanics with lifted state functions and due to the nature of our connection in
(4.14), we may treat quantum mechanics as a gauge theory as we will see in Section 4.4.

4.3 Sections of Frame Bundle LM and Gauge Transformations

In this section, we discuss only the case of complex line bundles for simplicity. It is also
sufficient for us because our tangent bundle is essentially a complex line bundle. Let
π : L−→M be a complex line bundle over a Hermitian manifold M of complex dimension
one and ∇ a Hermitian connection of the vector bundle. Let êα be a unitary frame on a chart
Uα ⊆M. Then there exist a connection one-form ωα such that

∇êα = ωα ⊗ êα . (4.15)
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Suppose that Uβ is another chart of M such that Uα ∩Uβ 6= /0. The transition map gαβ :
Uα ∩Uβ −→ GL(1,C)∼= C× can be defined by

êα = gαβ êβ . (4.16)

Here C× denotes the multiplicative group of nonzero complex numbers. The transition
map gαβ gives rise to the change of coordinates. Since êα and êβ are related by (4.16) on
Uα ∩Uβ 6= /0, we obtain

∇êα = ∇(gαβ êβ )

= (dgαβ )⊗ êβ +gαβ ∇êβ . (4.17)

By (4.15) we have
ωα ⊗ êα = (dgαβ +gαβ ωβ )⊗ êβ , (4.18)

or equivalently by (4.16),
ωα = g−1

αβ
dgαβ +ωβ . (4.19)

Note that g−1
αβ

dgαβ ∈ u(1). The formula (4.18) tells how the gauge potentials ωα and ωβ are
related. Physicists call (4.18) a gauge transformation. Just as a mathematical theory should
not depend on a certain coordinate system, neither should a physical theory. It would be
really awkward if we have two different physical theories regarding the same phenomenon
here on Earth and on Alpha Centauri. For that reason, physicists require particle theory to
be gauge invariant (i.e. invariant under gauge transformations).

The converse is also true, namely if {ωα} is a collection of one-forms satisfying (4.19)
on Uα ∩Uβ 6= /0, then there exists a Hermitian connection ∇ such that ∇êα = ωα ⊗ êα . First
define ∇êα = ωα ⊗ êα for each section êα : Uα −→ LM. On Uα ∩Uβ 6= /0, (4.17) holds and
it must coincide with ωα ⊗ êα . By (4.16) and (4.19),

ωα ⊗ êα = g−1
αβ

dgαβ ⊗ êα +ωβ êα

= dgαβ ⊗ (g−1
αβ

êα)+ωβ (gαβ êβ )

= dgαβ ⊗ êβ +gαβ ∇êβ .

Let ξ ∈ Γ(M,LM) be an arbitrary section. Then ξ |Uα
= ξα êα , where ξα : Uα −→ C. By

the Leibniz rule,

∇ξ |Uα
= dξα ⊗ êα +ξα∇êα

= (dξα +ωαξα)⊗ êα . (4.20)

∇êα
µ can be then extended to ∇ξ using (4.20).
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Let Fα be the two-form5

Fα = dωα

defined on Uα . Physically Fα is the field strength relative to the unitary frame field êα :
Uα −→ LM. On Uα ∩Uβ 6= /0, the gauge potentials ωα and ωβ are related by the gauge
transformation (4.19). If Fα and Fβ do not coincide on Uα ∩Uβ , it would again be a
physically awkward situation. The following proposition tells us that it will not happen.

Proposition 4.3.1. Let Fα and Fβ be the field strength relative to the unitary frame fields

êα : Uα −→ LM and êβ : Uβ −→ LM, respectively. If Uα ∩Uβ 6= /0, then Fα = Fβ on

Uα ∩Uβ .

Proof.

Fα = dωα

= d(g−1
αβ

dgαβ +ωβ )

= dg−1
αβ
∧dgαβ +g−1

αβ
d(dgαβ )+dωβ

= −g−1
αβ

(dgαβ )g
−1
αβ
∧dgαβ +dωβ

= dωβ = Fβ ,

since gαβ g−1
αβ

= I and d(dgαβ ) = 0.

Physically what Proposition 4.3.1 says is that the field strength is invariant under the
gauge transformation (4.18). The two-forms Fα and Fβ agree on the intersection of two
open sets Uα and Uβ in the cover and hence define a global two-form. It is denoted by F

and is called the curvature of ∇.

Remark 4.3.1. In a principal G-bundle, if the structure group G is a matrix Lie group, the
gauge transformation is given by

ωβ = g−1
αβ

dgαβ +g−1
αβ

ωαgαβ , (4.21)

where gαβ : Uα ∩Uβ −→ G is the transition map and the connection 1-forms (gauge
potentials) ωα takes values in g, the Lie algebra of G. The curvature (field strength) F is, of
course, invariant under the gauge transformation (4.21) and is given by (4.12).

5Fα ∈ u(1) and u(1) is a commutative Lie algebra, so [ωα ,ωα ] = 0.
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4.4 Quantum Mechanics of a Charged Particle in an Electromagnetic Field, as an
Abelian Gauge Theory

In this section we consider a charged particle with charge e described by the state function
ψ : M−→ C. We simply write ∇φ+

as ∇ because this will be the only covariant derivative
we are going to consider hereafter. We also denote ψφ+ simply by ψφ .

Assume that ω ∈ u(1) = so(2). Then in terms of space-time coordinates (t,x1,x2,x3),
ω can be written as

ω =− ie
h̄

ρdt− ie
h̄

Aαdxα , α = 1,2,3

where h̄ is the Dirac constant6. The covariant derivative (4.14) then becomes

∇ψφ = (dψ +ω)⊗
(

∂

∂ z

)
ψ

=

(
∂

∂ t
− ie

h̄
ρ

)
ψ

(
∂

∂ z

)
ψ

⊗dt +
(

∂

∂xα
− ie

h̄
Aα

)
ψ

(
∂

∂ z

)
ψ

⊗dxα . (4.22)

Define

∇0 :=
(

∂

∂ t
− ie

h̄
ρ

)
∂

∂ z
,

∇α :=
(

∂

∂xα
− ie

h̄
Aα

)
∂

∂ z
, α = 1,2,3.

Definition 4.4.1. Let
D j := π ◦∇ j, j = 0,1,2,3.

That is,

D0 =
∂

∂ t
− ie

h̄
ρ, Dα =

∂

∂xα
− ie

h̄
Aα .

Then D j is called the projected covariant derivative of ∇ j. Equivalently, ∇ j is called the
lifted covariant derivative of D j.

Remark 4.4.1. Interestingly, the complex Klein-Gordon field emerges rather naturally in
the lifted quantum mechanics model, because the D j are the gauge-invariant covariant
derivatives of a charged complex Klein-Gordon field. If we consider ψ not as a quantum
state function but as the fusion of two real fields representing a particle and its antiparticle,
then we can obtain electrically charged Klein-Gordon fields by considering a relevant
Lagrangian using the covariant derivatives D j. See sections 3.9 and 3.10 of [2] for details.

6Also called the reduced Planck constant.
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Now we discuss what the covariant derivatives (4.22) really mean. The Hamiltonian of a
particle in quantum mechanics is given by

H(r,p) =
p2

2m
+V (r), (4.23)

where r is the position operator and p is the momentum operator given by

pα =−ih̄
∂

∂xα
. (4.24)

In quantum mechanics, a state ψ evolves in time according to Schrödinger’s equation

ih̄
∂ψ

∂ t
= Hψ. (4.25)

Multiplying (4.22) by −ih̄, we obtain

−ih̄∇ψφ =−ih̄
(

∂

∂ t
− ie

h̄
ρ

)
ψ

(
∂

∂ z

)
ψ

⊗dt− ih̄
(

∂

∂xα
− ie

h̄
Aα

)
ψ

(
∂

∂ z

)
ψ

⊗dxα .

(4.26)
Intriguingly, (4.26) appears to be the momentum of lifted state ψφ . Set

Ē = ih̄
∂

∂ t
+ eρ

= E + eρ

and

p̄α = −ih̄
∂

∂xα
− eAα

= pα − eAα .

Now we are naturally led to the following conjecture:

Conjecture 4.4.1. Let

−Edt + pαdxα =−ih̄
∂

∂ t
dt + pαdxα

be the momentum 4-vector of a particle with charge e when there is no presence of an

electromagnetic field. If an electromagnetic field is introduced with electromagnetic potential

ρdt +Aαdxα as a background field, then the momentum 4-vector changes to

−Ēdt + p̄αdxα =−(E + eρ)dt +(pα − eAα)dxα . (4.27)
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The Hamiltonian and Schrödinger’s equation would then be replaced by

H̄(r, p̄) =
(p̄)2

2m
+V (r)

=
1

2m
(pα − eAα)

2 +V (r)

and

Ēψ = H̄ψ.

The following theorem (Theorem (16.34) in [3]) tells that our conjecture is indeed right.

Theorem 4.4.2. Let H = H(q, p, t) be the Hamiltonian for a charged particle, when no elec-

tromagnetic field is present. Let an electromagnetic field be introduced with electromagnetic

potential A = ρdt +Aαdxα , α = 1,2,3. Define a new canonical momentum variable p∗ in

T ∗M×R by

p∗α := pα + eAα(t,q) (4.28)

and a new Hamiltonian

H∗(q, p∗, t) := H(q, p, t)− eρ(t,q) = H(q, p∗− eA, t)− eρ(t,q). (4.29)

Then the particle of charge e satisfies new Hamiltonian equations

dq
dt

=
∂H∗

∂ p∗

d p∗

dt
= −∂H∗

∂q
(4.30)

dH∗

dt
=

∂H∗

∂ t
.

Proof. The theorem can be proved by comparing the solutions of the original system

dq
dt

=
∂H
∂ p

,
d p
dt

=−∂H
∂q

and the new system
dq
dt

=
∂H∗

∂ p∗
,

d p∗

dt
=−∂H∗

∂q
as seen in [3].

Remark 4.4.2. Let λ and Ω denote the Poincaré 1-form and 2-form, respectively, given by

λ = −Hdt + pαdxα ,

Ω = dλ = d(−Hdt + pαdxα).
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With new momenta p∗α = pα +eAα and new Hamiltonian H∗= H−eρ , the Poincaré 1-form
can be defined by

λ
∗ =−H∗dt + p∗αdxα .

Accordingly the Poincaré 2-form is

Ω
∗ = dλ

∗ = d(−H∗dt + p∗αdxα) = Ω+ eF,

where F = dA is the electromagnetic field stregth. It can be shown that Hamilton’s equations
can simply be written as

iX Ω
∗ = 0,

where X = ∂

∂ t +
dx
dt

∂

∂x +
d p
dt

∂

∂ p .

If a particle described by ψ has charge e and there is an additional external electromag-
netic field present, by Theorem 4.4.2, the Hamiltonian (4.23) should be replaced by

H(r,p∗) =
1

2m
(p∗α − eAα)

2 +V (r)− eρ (4.31)

and the canonical momenta p∗α should be replaced by p∗α =−ih̄ ∂

∂xα . Accordingly Schrödinger’s
equation (4.25) becomes

ih̄
[

∂

∂ t
−
(

ie
h̄

)
ρ

]
ψ =− h̄2

2m

[
∂

∂xα
−
(

ie
h̄

)
eAα

]2

ψ +V ψ (4.32)

or

ih̄D0ψ =− h̄2

2m
DαDαψ +V ψ. (4.33)

Notice that this is exactly the same equation as the one we conjectured. Although eρ is
regarded as a part of the Hamiltonian H∗ in Theorem 4.4.2, we know that eρ can be also
regarded as a part of the energy operator as discussed in Conjecture 4.4.1.
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Chapter 5

CONCLUSION

In this thesis, we discussed that by lifting quantum state functions to the holomorphic
tangent bundle T+(C) we may be able to study quantum mechanics in terms of Hermitian
differential geometry, consistent with standard quantum mechanics. The proposed lifted
quantum mechanics model also offers an alternative gauge theoretic treatment of quantum
mechanics by considering a complex line bundle over C instead of the spacetime M. An
advantage of the lifted quantum mechanics model is that when an external electromagnetic
field is introduced, the covariant derivative of a lifted state function naturally gives rise to
new energy and momentum operators for a charged particle resulted from the presence of
the external electromagnetic field. As a result we obtain a new Schrödinger’s equation that
describes the motion of a charged particle under the influence of the external electromagnetic
field.

The following questions may be considered for future research: 1. In this thesis, we
considered quantum mechanics as an abelian gauge theory, as an application of lifted

quantum mechanics, by introducing electromagnetic field as a backround field. Can we
study similarly quantum mechanics as a nonabelian gauge theory, for example as an su(2)-
valued field? In that case, ψ needs to be considered as a spinor-valued map ψ : M−→ C2.
If so, what are the possible physical applications? 2. Can we extend our results for a curved
space-time? If so, we may be able to study the quantum mechanical motion of a charged
particle in a charged (or a rotating) blackhole or a wormhole (J. Wheeler’s problem. See
pp.140–152 of [1]).



27

BIBLIOGRAPHY

[1] J. Baez and J.P. Muniain. Gauge Theories, Knots and Gravity. World Scientific, 1994.

[2] B. Felsager. Geometry, Particles and Fields, 2nd Edition. Odense University Press, 1983.

[3] T. Frankel. The Geometry of Physics, An Introduction. Cambridge University Press, 2001.

[4] W. Greiner. Quantum Mechanics, An Introduction, 4th Edition. Springer, 2001.

[5] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Wiley, 1996.

[6] M. Murray. Notes on Line Bundles.
Found at http://www.maths.adelaide.edu.au/michael.murray/line_bundles.pdf.

[7] M. Nakahara. Geometry, Topology, and Physics, 2nd Edition. Institute of Physics Publishing,
2003.

[8] C. Nash and S. Sen. Topology and Geometry for Physicists. Academic Press, 1987.


