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Abstract

In this paper, we construct timelike surfaces of revolution with
constant mean curvature H = c and minimal timelike surfaces of rev-
olution in de Sitter 3-space S31(c2) of constant sectional curvature c2.
It is shown that surfaces of revolution with constant mean curvature
H = c in S31(c2) tend toward a timelike catenoid, the timelike surface
of revolution in Minkowski 3-space R2+1 as c → 0. Minimal timelike
surfaces of revolution in S31(c2) also tend toward the timelike catenoid
in R2+1 as c → 0.
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Introduction

The symmetry group of the Minkowski 3-space R2+1 is the Lorentz group
O(2, 1), i.e. the set of all Lorentz isometries of R2+1. In particular, the parity
preserving Lorentz isometries form a subgroup SO(2, 1) of O(2, 1) which is
called the special Lorentz group. SO(2, 1) contains rotations about the time
axis and Lorentz boosts which may be considered as rotations about spacial
axis in R2+1. In physics, the trajectory of a massive particle is spacetime
is called a worldline. In geometry, a worldline x(λ) = (xµ(λ)) is called a
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timelike curve. The velocity vector dxµ

dλ satisfies 〈x(λ), x(λ)〉 = ηµν
dxµ

dλ
dxν

dλ <
0, where 〈 , 〉 is the inner product induced by the flat Lorentzian metric of
R2+1 and ηµν is the metric tensor of signature (− + +). The arc-length of
x(λ) is defined to be

4x :=

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ.

In physics, x(λ) is called proper time and is interpreted as the actual time
elapsed on a physical clock carried along the curve. A surface that is ob-
tained by rotating a timelike curve about an axis in R2+1 is a timelike sur-
face of revolution. In [5], the authors studied on how to construct a timelike
surface of revolution with constant mean curvature in R2+1 by solving the
differential equation of its profile curve. Other than flat Minkowski 3-space,
there is another interesting Lorentzian 3-manifold called de Sitter 3-space
S31(c2). de Sitter 3-space is a timelike manifold of constant sectional cur-
vature c2. de Sitter 3-space has SO(2) symmetry, so we may still consider
rotations there. In this paper, the authors consider the flat chart model of
S31(c2) which is R3(t, x, y) with the metric gc = −(dt)2+ e2ct{(dx)2+(dy)2}.
From the metric we clearly see that rotations in the xy-plane are the only
kind of rotations that may be considered in S31(c2). The authors study how
to construct timelike surfaces of constant mean curvature in S31(c2). From
a string theory point of view, timelike surfaces of revolution with constant
mean curvature in S31(c2) may be regarded as string worldsheets that are
swept by closed strings in S31(c2).

Due to an analogue of Lawson correspondence ([3]) discussed in [4], there
is a one-to-one correspondence between timelike surfaces of constant mean
curvature Hs in S31(c2) and timelike surfaces of constant mean curvature
Hm = ±

√
H2

s + c2 in R2+1. So, under the Lawson type correspondence,
there are no timelike surfaces of constant mean curvature in S31(c2) that are
corresponded to minimal timelike surfaces in R2+1. Interestingly, however,
we show in this paper that the timelike catenoid, the minimal timelike sur-
face of revolution in R2+1 is the limit of timelike surfaces of revolution with
constant mean curvature H = c in S31(c2) as c → 0.

The authors also study how to construct minimal timelike surfaces of
revolution in S31(c2) using calculus of variations. Note that here the harmonic
map equation is no longer the wave equation, so minimal timelike surfaces in
S31(c2) is not characterized by their mean curvature. We construct minimal
timelike surfaces of revolution in S31(c2) using the calculus of variations.
The minimal timelike surfaces of revolution in S31(c2) also tend toward the
spacelike catenoid in R2+1 as c → 0.
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1 The Flat Chart Model of de Sitter 3-Space S31(c2)

Let R3+1 denote Minkowski spacetime with rectangular coordinates x0, x1,
x2, x3 and the Lorentzian metric

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (1)

De Sitter 3-space is the hyperquadric

S3(c2) := {(x0, x1, x2, x3) ∈ R3+1 : −(x0)2+(x1)2+(x2)2+(x3)2 =
1

c2
} (2)

which is a 3-dimensional hyperboloid of one sheet in spacetime. De Sitter
3-space is a timelike 3-manifold of constant sectional curvature c2. Consider
the open chart

U = {(x0, x1, x2, x3) ∈ S3(c2) : x0 + x1 > 0}

and define (see [2])

t =
1

c
log c(x0 + x1),

x =
x2

c(x0 + x1)
,

y =
x3

c(x0 + x1)
.

(3)

Then
ds2 = −(dt)2 + e2ct{(dx)2 + (dy)2}.

R3 with coordinates t, x, y and the metric

gc := −(dt)2 + e2ct{(dx)2 + (dy)2} (4)

is called the flat chart model of de Sitter 3-space. We will still denote it by
S3(c2). As c → 0, S3(c2) flattens out to Minkowski 3-space R2+1.
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2 Parametric Timelike Surfaces in S3(c2)

Let M be a domain1 and ϕ : M −→ S3(c2) an immersion. The metric (4)
induces an inner product 〈 , 〉 on each tangent space TpS3(c2).
Definition 1. An immersion ϕ : M(u, v) −→ S3(c2) is said to be timelike
if ∂ϕ

∂u is timelike and ∂ϕ
∂v is spacelike, i.e.〈
∂ϕ

∂u
,
∂ϕ

∂u

〉
< 0,

〈
∂ϕ

∂v
,
∂ϕ

∂v

〉
> 0.

Using the induced inner product on each TpS3(c2), we can speak of con-
formal surfaces in S3(c2).
Definition 2. ϕ : M −→ S3(c2) is said to be Lorentz conformal if

〈ϕu, ϕv〉 = 0,

−|ϕu|2 = |ϕv|2 = eω,
(5)

where (u, v) is a local coordinate system in M and ω : M −→ R is a real-
valued function in M . Lorentz conformal timelike surfaces are called Lorentz
surfaces.

The induced metric on the Lorentz surface is given by

ds2ϕ = 〈dϕ, dϕ〉 = eω{−(du)2 + (dv)2}. (6)

If N is a unit normal vector field of a timelike immersion ϕ : M −→
S31(c2), then

〈N,N〉 = 1, 〈N,ϕu〉 = 〈N,ϕv〉 = 0.

In order to calculate a unit normal vector field, we need an analogue of the
cross product. We will still call that analogue the cross product. Although
S31(c2) is not a vector space, the cross product on it can be defined locally
on each tangent space TpS31(c2), which is a vector space. Let v = v1

(
∂
∂t

)
p
+

v2
(

∂
∂x

)
p
+ v3

(
∂
∂y

)
p
, w = w1

(
∂
∂t

)
p
+w2

(
∂
∂x

)
p
+w3

(
∂
∂y

)
p
∈ TpS3(c2), where{(

∂
∂t

)
p
,
(

∂
∂x

)
p
,
(

∂
∂y

)
p

}
denote the canonical basis for TpS3(c2). Then the

cross product v ×w is defined to be

v ×w = (−v2w3 + v3w2)

(
∂

∂t

)
p

+ e−2ct(v3w1 − v1w3)

(
∂

∂x

)
p

+ e−2ct(v1w2 − v2w1)

(
∂

∂y

)
p

(7)

1A 2-dimensional connected open set.
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where p = (t, x, y) ∈ S3(c2).
We can also write (7) simply as a determinant

v ×w =

∣∣∣∣∣∣
− ∂

∂t e−2ct ∂
∂x e−2ct ∂

∂y

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (8)

One may also define a triple scalar product 〈u,v ×w〉 as a determinant

〈u,v ×w〉 =

∣∣∣∣∣∣
−u1 e−2ctu2 e−2ctu3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ . (9)

However, the cross product and the inner product are not interchangeable
i.e.

〈u,v ×w〉 6= 〈u× v,w〉

unlike the Euclidean case.
Let

E := 〈ϕu, ϕu〉, F := 〈ϕu, ϕv〉, G := 〈ϕv, ϕv〉. (10)

Proposition 1. Let ϕ : M −→ S3(c2) be an immersion. Then on each
tangent plane Tpϕ(M),

||ϕu × ϕv||2 = e−4ct(u,v)(F 2 − EG) (11)

where p = (t(u, v), x(u, v), y(u, v)) ∈ S3(c2).

Proof. Straightforward by a direct calculation.

Remark 1. If c → 0, (11) becomes the familiar formula in Lorentzian case
[5]

||ϕu × ϕv||2 = F 2 − EG.

3 The Mean curvature of a Parametric Surface in
S3(c2)

In the well-known Euclidean case, the mean curvature of a parametric sur-
face ϕ(u, v) may be calculated by Gauss’s beautiful formula [7]

H =
G`+ En− 2Fm

2(EG− F 2)
(12)
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where
` = 〈ϕuu, N〉, m = 〈ϕuv, N〉, n = 〈ϕvv, N〉

andN is the unit normal vector field of ϕ(u, v). The formula (12) is still valid
for parametric surfaces in any 3-dimensional space-form including timelike
surfaces in S31(c2). The derivation of (12) in [7] requires a use of Lagrange’s
identity which is no longer valid in tangent spaces of S3(c2). However, the
formula (12) may also be proved using the shape operator of a parametric
surface in a 3-dimensional space-form obtained from its unit normal vector
field. The proof is elementary and may be found in [6] for instance. In
particular, we obtain the following proposition from (12).

Proposition 2. Let ϕ : M −→ S3(c2) be a conformal surface satisfying (5).
Then the mean curvature H of ϕ is computed to be

H =
1

2
e−ω〈�ϕ,N〉, (13)

where � = − ∂2

∂u2 + ∂2

∂v2
is d’Alembert’s operator.

4 Lorentz Surfaces of Revolution with Constant
Mean Curvature in S3(c2)

There is an interesting one-to-one correspondence, the Lawson-Guichard cor-
respondence, between constant mean curvature surfaces in different semi-
Riemannian space forms [4]. The correspondence is more than just a bi-
jection. Corresponding constant mean curvature surfaces satisfy the same
Gauss-Codazzi equations, so they share many geometric properties in com-
mon, even though they live in different spaces. For this reason they are
often called cousins. In particular, there is a one-to-one correspondence be-
tween timelike surfaces of constant mean curvature H in S3(c2) and timelike
surfaces of constant mean curvature2

Hm = ±
√

H2 + c2 (14)

in Minkowski 3-space R2+1. As seen clearly in (14), there are no timelike
surfaces of constant mean curvature in S31(c2) that correspond to minimal3

timelike surfaces in R2+1. Physically, minimal timelike surfaces in R2+1 are
bosonic string worldsheets. While there are no cousins in S31(c2) of minimal

2The choice of ± signs depends on the orientation of the surface.
3Area minimizing surfaces or equivalently conformal surfaces with zero mean curvature.
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timelike surfaces in R2+1, the limit of timelike surfaces of revolution with
constant mean curvature H = c in S31(c2) as c → 0 is the timelike catenoid4,
the minimal timelike surface of revolution in R2+1.

In this section, we are interested in constructing a Lorentz surface of
revolution with constant mean curvature H = c in S3(c2) which corresponds
to a Lorentz surface of constant mean curvature ±

√
2c in R2+1 via the

Lawson-Guichard correspondence.
From the metric (4), one can see that S31(c2) has SO(2) symmetry, i.e.

SO(2) is a subgroup of the isometry group of S31(c2), and it is the maximally
rotational symmetry. More specifically, the rotations about the t-axis (i.e.
rotations on the xy-plane) are the only type of Euclidean rotations that can
be considered in S31(c2).

Consider a profile curve α(u) = (g(u), h(u), 0) in the tx-plane. Denote
by ϕ(u, v) the rotation of α(u) about t-axis through an angle v. Then

ϕ(u, v) = (g(u), h(u) cos v, h(u) sin v). (15)

If ġ(u) = dg(u)
du is never 0, (15) has a parametrization of the form

ϕ(w, v) = (w, f(w) cos v, f(w) sin v).

Thus, without loss of generality we may assume that g(u) = u in (15). The
quantities E,F,G are calculated to be

E = e2cu{−e−2cu + ḣ(u)2},
F = 0,

G = e2cuh(u)2.

If we require ϕ(u, v) to be conformal, then

e−2cu − ḣ(u)2 = h(u)2. (16)

The quantities `,m, n are calculated to be

` = − ḧ(u)h(u)√
h(u)2(e−2cu − ḣ(u)2)

,

m = 0,

n =
h(u)2√

h(u)2(e−2cu − ḣ(u)2)
.

4Timelike catenoid is physically worldsheet of a closed string in R2+1.
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So the mean curvature H is calculated by

H =
G`+ En− 2Fm

2(EG− F 2)

=
1

2

−h(u)ḧ(u)− e−2cu + ḣ(u)2

e2cu(−e−2cu + ḣ(u)2)
√

h(u)2(e−2cu − ḣ(u)2)
.

With the conformality condition (16), H becomes

H =
ḧ(u) + h(u)

2e2cuh(u)3
. (17)

Differentiating (16) with respect to u, we obtain

ḣ(u)(ḧ(u) + h(u)) = ce2cu. (18)

It follows from (17) and (18) that if H = 0 then c = 0 and hence we have:

Proposition 3. There are no Lorentz surfaces of revolution with H = 0 in
S31(c2).

Remark 2. Although S31(c2) does not admit Lorentz surfaces of revolution
with H = 0, it does not mean that there are no timelike surfaces with H = 0
in S31(c2). For instance, the timelike plane (u, v, 0) in S31(c2) has H = 0. The
timelike plane is not conformal in S31(c2).
Remark 3. The timelike catenoid ϕ(u, v) = (u, cosu cos v, cosu sin v) is a
minimal Lorentz surface in R2+1 (see [5]). One may consider the timelike
catenoid in S31(c2) but then it is not conformal since E = −1 + e2cu sin2 u,
F = 0, and G = e2cu cos2 u. Its mean curvature is neither 0 nor constant. It
is given by

H = −1

2

−1 + e2cu

| cosu|(1− e2cu sin2 u)
3
2

.

ϕ(u, v) satisfies the equation −ϕuu + ϕvv = 0. Note that this does not lead
to H = 0 since ϕ(u, v) is not conformal.

Let H = c. Then (17) can be written as

ḧ(u) + h(u)− 2ce2cuh(u)3 = 0. (19)

Hence, constructing a surface of revolution with H = c comes down to solv-
ing the second order nonlinear differential equation (19). Unfortunately,
we cannot solve (19) analytically, so we solve it numerically with the aid of
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MAPLE. (See Appendix B of [6] for details of the computational procedure.)
In the next section, we show the graphics of the Lorentz surface of revolution
with constant mean curvature H = c in S31(c2) that we obtained using the
numerical solution of the differential equation (19). The conformality condi-
tion (16) can be used to determine initial conditions. For all the numerical
solutions of (19) in this paper, we used the same initial conditions h(0) = 0
and ḣ(0) =

√
1− h(0)2 = 1.

If c → 0, then (19) becomes

ḧ(u) + h(u) = 0 (20)

which is an equation of underdamped simple harmonic oscillator. The equa-
tion (20) has the general solution

h(u) = c1 cosu+ c2 sinu.

This h(u) gives rise to a minimal timelike surface of revolution in R2+1 which
is called a timelike catenoid. For c1 = 1, c2 = 0, ϕ(u, v) is given by

ϕ(u, v) = (u, cosu cos v, cosu sin v). (21)

This is a minimal surface of revolution in R2+1 which is called a timelike
catenoid. Figure 1 shows a timelike catenoid with h(0) = 0 and ḣ(0) = 1.

(a) (b)

Fig. 1: (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Timelike Catenoid in R2+1
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5 The Illustration of the Limit of Lorentz Surfaces
of Revolution with H = c in S31(c2) as c → 0

In section 4, it is shown that the limit of Lorentz surfaces of revolution
with constant mean curvature H = c in S31(c2) is the timelike catenoid,
the minimal timelike surface of revolution in R2+1. In this section, such
limiting behavior of Lorentz surfaces of revolution with H = c in S31(c2) is
illustrated with graphics in Figure 2 (H = 1), Figure 3 (H = 1

2), Figure 4
(H = 1

4), Figure 5 (H = 1
8), Figure 6 (H = 1

64), and Figure 7 (H = 1
256).

These still images clearly show the limiting behavior of Lorentz surfaces
of revolution with CMC H = c in S31(c2) as c → 0. The authors have
made an animation of the limiting behavior available at http://www.math.
usm.edu/lee/tldscmcanim.gif. The graphic of each profile curve h(u) (in
blue) is drawn with the graphic of the profile curve of timelike catenoid in
R2+1 (in red) for visual comparison. The graphic of each Lorentz surface of
revolution (in blue) is also drawn with the graphic of timelike catenoid in
R2+1 (in transparent greyscale) for visual comparison.

(a) (b)

Fig. 2: CMC H = 1: (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz
Surface of Revolution in S31(1)

6 Minimal Lorentz Surface of Revolution in S3(c2)

In this section, we construct a minimal Lorentz surface of revolution in S31(c2)
using the calculus of variation. Let us consider a surface of revolution which
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(a) (b)

Fig. 3: CMC H = 1
2 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz

Surface of Revolution in S31
(
1
4

)
is obtained by rotating a timelike curve x(t) in the tx-plane about the t-
axis. The curve is required to pass through the points (t1, x1) and (t2, x2) as
shown in Figure 8. Since x(t) is a timelike curve, the squared infinitesimal
arc-length shown in Figure 8

ds2 = −(dt)2 + e2ct(dx)2

is negative. So, the infinitesimal arc-length ds should be the proper time√
−ds2 which we will simply denote by ds. Thus, the area element dA for a

Lorentz surface of revolution is given by

dA = 2πx(t)ds

= 2πx(t)
√

(dt)2 − e2ct(dx)2

= 2πx(t)
√

1− e2ctẋ(t)2dt,

(22)

where ẋ(t) = dx
dt . The area functional is then

J =

∫ t2

t1

2πx(t)
√

1− e2ctẋ(t)2dt. (23)
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(a) (b)

Fig. 4: CMC H = 1
4 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz

Surface of Revolution in S31
(

1
16

)
Let5 f(x, ẋ, t) = x

√
1− e2ctẋ2. Finding a critical point of the area functional

is equivalent to solving the Euler-Lagrange equation (see [1] for example)

∂f

∂x
− d

dt

∂f

∂ẋ
= 0. (24)

The Euler-Lagrange equation (24) is equivalent to the second order nonlinear
differential equation

−1 + e2ctẋ2 + cxe4ctẋ3 − 2xce2ctẋ− xe2ctẍ = 0. (25)

We require the timelike surface of revolution to be conformal. Applying the
conformality condition (16) in terms of x(t), the equation (25) simplifies to

ẍ+ c(1 + e2ctx2)ẋ+ x = 0. (26)

We solve this nonlinear differential equation numerically as it cannot be
solved analytically. Figure 9 shows the profile curve x(t) and the minimal
Lorentz surface of revolution in S31(1). For the numerical solution, we used
the same initial conditions x(0) = 0 and ẋ(0) = 1 as before.

If c → 0, then (25) becomes the equation of underdamped simple har-
monic oscillator (20). Thus, as c → 0 minimal Lorentz surfaces of revo-
lution in S31(c2) also tend toward the timelike catenoid, the minimal time-
like surface of revolution in R2+1. An animation of this limiting behavior

5The constant 2π can be ignored since it makes no contribution to the solution of our
variational problem.
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(a) (b)

Fig. 5: CMC H = 1
8 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz

Surface of Revolution in S31
(

1
64

)
of minimal Lorentz surfaces of revolution in S31(c2) is available at http:

//www.math.usm.edu/lee/tldsminimalanim.gif.
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Fig. 6: CMC H = 1
64 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz

Surface of Revolution in S31
(

1
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(a) (b)

Fig. 7: CMC H = 1
256 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Lorentz

Surface of Revolution in S31
(

1
65535

)

t

x

ds

(t

(t

1 , x1)

2
, x2)

x(t)

Fig. 8: Surface of Revolution in S31(c2)
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(a) (b)

Fig. 9: (a) Profile Curve x(t), −8 ≤ u ≤ 1.2, (b) Minimal Lorentz Surface
of Revolution in S31(1)
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